Topology And Maps


Download Topology And Maps PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Topology And Maps book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Topology and Maps


Topology and Maps

Author: T. Husain

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





This work is suitable for undergraduate students as well as advanced students and research workers. It consists of ten chapters, the first six of which are meant for beginners and are therefore suitable for undergraduate students; Chapters VII-X are suitable for advanced students and research workers interested in functional analysis. This book has two special features: First, it contains generalizations of continuous maps on topological spaces, e. g. , almost continuous maps, nearly continuous maps, maps with closed graph, graphically continuous maps, w-continuous maps, and a-continuous maps, etc. and some of their properties. The treatment of these notions appears here, in Chapter VII, for the first time in book form. The second feature consists in some not-so-easily-available nuptial delights that grew out of the marriage of topology and functional analysis; they are topics mainly courted by functional analysts and seldom given in topology books. Specifically, one knows that the set C(X) of all real- or com plex-valued continuous functions on a completely regular space X forms a locally convex topological algebra, a fortiori a topological vector space, in the compact-open topology. A number of theorems are known: For example, C(X) is a Banach space iff X is compact, or C(X) is complete iff X is a kr-space, and so on. Chapters VIII and X include this material, which, to the regret of many interested readers has not previously been available in book form (a recent publication (Weir [\06]) does, however, contain some material of our Chapter X).

A Concise Course in Algebraic Topology


A Concise Course in Algebraic Topology

Author: J. P. May

language: en

Publisher: University of Chicago Press

Release Date: 1999-09


DOWNLOAD





Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.

General Topology


General Topology

Author: John L. Kelley

language: en

Publisher: Courier Dover Publications

Release Date: 2017-03-17


DOWNLOAD





"The clarity of the author's thought and the carefulness of his exposition make reading this book a pleasure," noted the Bulletin of the American Mathematical Society upon the 1955 publication of John L. Kelley's General Topology. This comprehensive treatment for beginning graduate-level students immediately found a significant audience, and it remains a highly worthwhile and relevant book for students of topology and for professionals in many areas. A systematic exposition of the part of general topology that has proven useful in several branches of mathematics, this volume is especially intended as background for modern analysis. An extensive preliminary chapter presents mathematical foundations for the main text. Subsequent chapters explore topological spaces, the Moore-Smith convergence, product and quotient spaces, embedding and metrization, and compact, uniform, and function spaces. Each chapter concludes with an abundance of problems, which form integral parts of the discussion as well as reinforcements and counter examples that mark the boundaries of possible theorems. The book concludes with an extensive index that provides supplementary material on elementary set theory.