Topology And Approximate Fixed Points

Download Topology And Approximate Fixed Points PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Topology And Approximate Fixed Points book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Topology and Approximate Fixed Points

This book examines in detail approximate fixed point theory in different classes of topological spaces for general classes of maps. It offers a comprehensive treatment of the subject that is up-to-date, self-contained, and rich in methods, for a wide variety of topologies and maps. Content includes known and recent results in topology (with proofs), as well as recent results in approximate fixed point theory. This work starts with a set of basic notions in topological spaces. Special attention is given to topological vector spaces, locally convex spaces, Banach spaces, and ultrametric spaces. Sequences and function spaces—and fundamental properties of their topologies—are also covered. The reader will find discussions on fundamental principles, namely the Hahn-Banach theorem on extensions of linear (bounded) functionals; the Banach open mapping theorem; the Banach-Steinhaus uniform boundedness principle; and Baire categories, including some applications. Also included are weak topologies and their properties, in particular the theorems of Eberlein-Smulian, Goldstine, Kakutani, James and Grothendieck, reflexive Banach spaces, l_{1}- sequences, Rosenthal's theorem, sequential properties of the weak topology in a Banach space and weak* topology of its dual, and the Fréchet-Urysohn property. The subsequent chapters cover various almost fixed point results, discussing how to reach or approximate the unique fixed point of a strictly contractive mapping of a spherically complete ultrametric space. They also introduce synthetic approaches to fixed point problems involving regular-global-inf functions. The book finishes with a study of problems involving approximate fixed point property on an ambient space with different topologies. By providing appropriate background and up-to-date research results, this book can greatly benefit graduate students and mathematicians seeking to advance in topology and fixed point theory.
Fixed Point Theory for Lipschitzian-type Mappings with Applications

Author: Ravi P. Agarwal
language: en
Publisher: Springer Science & Business Media
Release Date: 2009-06-12
In recent years, the fixed point theory of Lipschitzian-type mappings has rapidly grown into an important field of study in both pure and applied mathematics. It has become one of the most essential tools in nonlinear functional analysis. This self-contained book provides the first systematic presentation of Lipschitzian-type mappings in metric and Banach spaces. The first chapter covers some basic properties of metric and Banach spaces. Geometric considerations of underlying spaces play a prominent role in developing and understanding the theory. The next two chapters provide background in terms of convexity, smoothness and geometric coefficients of Banach spaces including duality mappings and metric projection mappings. This is followed by results on existence of fixed points, approximation of fixed points by iterative methods and strong convergence theorems. The final chapter explores several applicable problems arising in related fields. This book can be used as a textbook and as a reference for graduate students, researchers and applied mathematicians working in nonlinear functional analysis, operator theory, approximations by iteration theory, convexity and related geometric topics, and best approximation theory.
The Computation of Fixed Points and Applications

Author: M. J. Todd
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-03-09
Fixed-point algorithms have diverse applications in economics, optimization, game theory and the numerical solution of boundary-value problems. Since Scarf's pioneering work [56,57] on obtaining approximate fixed points of continuous mappings, a great deal of research has been done in extending the applicability and improving the efficiency of fixed-point methods. Much of this work is available only in research papers, although Scarf's book [58] gives a remarkably clear exposition of the power of fixed-point methods. However, the algorithms described by Scarf have been super~eded by the more sophisticated restart and homotopy techniques of Merrill [~8,~9] and Eaves and Saigal [1~,16]. To understand the more efficient algorithms one must become familiar with the notions of triangulation and simplicial approxi- tion, whereas Scarf stresses the concept of primitive set. These notes are intended to introduce to a wider audience the most recent fixed-point methods and their applications. Our approach is therefore via triangu- tions. For this reason, Scarf is cited less in this manuscript than his contri- tions would otherwise warrant. We have also confined our treatment of applications to the computation of economic equilibria and the solution of optimization problems. Hansen and Koopmans [28] apply fixed-point methods to the computation of an invariant optimal capital stock in an economic growth model. Applications to game theory are discussed in Scarf [56,58], Shapley [59], and Garcia, Lemke and Luethi [24]. Allgower [1] and Jeppson [31] use fixed-point algorithms to find many solutions to boundary-value problems.