Topological Strings And Quantum Curves


Download Topological Strings And Quantum Curves PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Topological Strings And Quantum Curves book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Topological Strings and Quantum Curves


Topological Strings and Quantum Curves

Author: Lotte Hollands

language: en

Publisher: Amsterdam University Press

Release Date: 2009


DOWNLOAD





This thesis presents several new insights on the interface between mathematics and theoretical physics, with a central role for Riemann surfaces. First of all, the duality between Vafa-Witten theory and WZW models is embedded in string theory. Secondly, this model is generalized to a web of dualities connecting topological string theory and N=2 supersymmetric gauge theories to a configuration of D-branes that intersect over a Riemann surface. This description yields a new perspective on topological string theory in terms of a KP integrable system based on a quantum curve. Thirdly, this thesis describes a geometric analysis of wall-crossing in N=4 string theory. And lastly, it offers a novel approach to constuct metastable vacua in type IIB string theory.

Topological Recursion and its Influence in Analysis, Geometry, and Topology


Topological Recursion and its Influence in Analysis, Geometry, and Topology

Author: Chiu-Chu Melissa Liu

language: en

Publisher: American Mathematical Soc.

Release Date: 2018-11-19


DOWNLOAD





This volume contains the proceedings of the 2016 AMS von Neumann Symposium on Topological Recursion and its Influence in Analysis, Geometry, and Topology, which was held from July 4–8, 2016, at the Hilton Charlotte University Place, Charlotte, North Carolina. The papers contained in the volume present a snapshot of rapid and rich developments in the emerging research field known as topological recursion. It has its origin around 2004 in random matrix theory and also in Mirzakhani's work on the volume of moduli spaces of hyperbolic surfaces. Topological recursion has played a fundamental role in connecting seemingly unrelated areas of mathematics such as matrix models, enumeration of Hurwitz numbers and Grothendieck's dessins d'enfants, Gromov-Witten invariants, the A-polynomials and colored polynomial invariants of knots, WKB analysis, and quantization of Hitchin moduli spaces. In addition to establishing these topics, the volume includes survey papers on the most recent key accomplishments: discovery of the unexpected relation to semi-simple cohomological field theories and a solution to the remodeling conjecture. It also provides a glimpse into the future research direction; for example, connections with the Airy structures, modular functors, Hurwitz-Frobenius manifolds, and ELSV-type formulas.

String-Math 2014


String-Math 2014

Author: Vincent Bouchard:

language: en

Publisher: American Mathematical Soc.

Release Date: 2016-06-10


DOWNLOAD





The conference String-Math 2014 was held from June 9–13, 2014, at the University of Alberta. This edition of String-Math is the first to include satellite workshops: “String-Math Summer School” (held from June 2–6, 2014, at the University of British Columbia), “Calabi-Yau Manifolds and their Moduli” (held from June 14–18, 2014, at the University of Alberta), and “Quantum Curves and Quantum Knot Invariants” (held from June 16–20, 2014, at the Banff International Research Station). This volume presents the proceedings of the conference and satellite workshops. For mathematics, string theory has been a source of many significant inspirations, ranging from Seiberg-Witten theory in four-manifolds, to enumerative geometry and Gromov-Witten theory in algebraic geometry, to work on the Jones polynomial in knot theory, to recent progress in the geometric Langlands program and the development of derived algebraic geometry and n-category theory. In the other direction, mathematics has provided physicists with powerful tools, ranging from powerful differential geometric techniques for solving or analyzing key partial differential equations, to toric geometry, to K-theory and derived categories in D-branes, to the analysis of Calabi-Yau manifolds and string compactifications, to modular forms and other arithmetic techniques. Articles in this book address many of these topics.


Recent Search