Topological Fixed Point Theory Of Multivalued Mappings

Download Topological Fixed Point Theory Of Multivalued Mappings PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Topological Fixed Point Theory Of Multivalued Mappings book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Topological Fixed Point Theory of Multivalued Mappings

Author: Lech Górniewicz
language: en
Publisher: Springer Science & Business Media
Release Date: 1999
This volume presents a broad introduction to the topological fixed point theory of multivalued (set-valued) mappings, treating both classical concepts as well as modern techniques. A variety of up-to-date results is described within a unified framework.
Topological Fixed Point Theory of Multivalued Mappings

Author: Lech Górniewicz
language: en
Publisher: Springer Science & Business Media
Release Date: 2006-06-03
This book is an attempt to give a systematic presentation of results and me- ods which concern the ?xed point theory of multivalued mappings and some of its applications. In selecting the material we have restricted ourselves to stu- ing topological methods in the ?xed point theory of multivalued mappings and applications, mainly to di?erential inclusions. Thus in Chapter III the approximation (on the graph) method in ?xed point theory of multivalued mappings is presented. Chapter IV is devoted to the ho- logical methods and contains more general results, e.g. the Lefschetz Fixed Point Theorem, the ?xed point index and the topological degree theory. In Chapter V applications to some special problems in ?xed point theory are formulated. Then in the last chapter a direct applications to di?erential inclusions are presented. Note that Chapters I and II have an auxiliary character, and only results c- nected with the Banach Contraction Principle (see Chapter II) are strictly related to topological methods in the ?xed point theory. In the last section of our book (see Section 75) we give a bibliographicalguide and also signalsome further results which are not contained in our monograph. The author thanks several colleagues and my wife Maria who read and c- mented on the manuscript. These include J. Andres, A. Buraczewski, G. Gabor, A. G ́orka,M.Go ́rniewicz, S. Park and A. Wieczorek. The author wish to express his gratitude to P. Konstanty for preparing the electronic version of this monograph.
Topological Fixed Point Theory for Singlevalued and Multivalued Mappings and Applications

This is a monograph covering topological fixed point theory for several classes of single and multivalued maps. The authors begin by presenting basic notions in locally convex topological vector spaces. Special attention is then devoted to weak compactness, in particular to the theorems of Eberlein–Šmulian, Grothendick and Dunford–Pettis. Leray–Schauder alternatives and eigenvalue problems for decomposable single-valued nonlinear weakly compact operators in Dunford–Pettis spaces are considered, in addition to some variants of Schauder, Krasnoselskii, Sadovskii, and Leray–Schauder type fixed point theorems for different classes of weakly sequentially continuous operators on general Banach spaces. The authors then proceed with an examination of Sadovskii, Furi–Pera, and Krasnoselskii fixed point theorems and nonlinear Leray–Schauder alternatives in the framework of weak topologies and involving multivalued mappings with weakly sequentially closed graph. These results are formulated in terms of axiomatic measures of weak noncompactness. The authors continue to present some fixed point theorems in a nonempty closed convex of any Banach algebras or Banach algebras satisfying a sequential condition (P) for the sum and the product of nonlinear weakly sequentially continuous operators, and illustrate the theory by considering functional integral and partial differential equations. The existence of fixed points, nonlinear Leray–Schauder alternatives for different classes of nonlinear (ws)-compact operators (weakly condensing, 1-set weakly contractive, strictly quasi-bounded) defined on an unbounded closed convex subset of a Banach space are also discussed. The authors also examine the existence of nonlinear eigenvalues and eigenvectors, as well as the surjectivity of quasibounded operators. Finally, some approximate fixed point theorems for multivalued mappings defined on Banach spaces. Weak and strong topologies play a role here and both bounded and unbounded regions are considered. The authors explicate a method developed to indicate how to use approximate fixed point theorems to prove the existence of approximate Nash equilibria for non-cooperative games. Fixed point theory is a powerful and fruitful tool in modern mathematics and may be considered as a core subject in nonlinear analysis. In the last 50 years, fixed point theory has been a flourishing area of research. As such, the monograph begins with an overview of these developments before gravitating towards topics selected to reflect the particular interests of the authors.