Topics In Stochastic Processes

Download Topics In Stochastic Processes PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Topics In Stochastic Processes book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Topics in Stochastic Processes

Topics in Stochastic Processes covers specific processes that have a definite physical interpretation and that explicit numerical results can be obtained. This book contains five chapters and begins with the L2 stochastic processes and the concept of prediction theory. The next chapter discusses the principles of ergodic theorem to real analysis, Markov chains, and information theory. Another chapter deals with the sample function behavior of continuous parameter processes. This chapter also explores the general properties of Martingales and Markov processes, as well as the one-dimensional Brownian motion. The aim of this chapter is to illustrate those concepts and constructions that are basic in any discussion of continuous parameter processes, and to provide insights to more advanced material on Markov processes and potential theory. The final chapter demonstrates the use of theory of continuous parameter processes to develop the Itô stochastic integral. This chapter also provides the solution of stochastic differential equations. This book will be of great value to mathematicians, engineers, and physicists.
Applied Stochastic Processes

Author: Mario Lefebvre
language: en
Publisher: Springer Science & Business Media
Release Date: 2007-12-14
Applied Stochastic Processes uses a distinctly applied framework to present the most important topics in the field of stochastic processes. Key features: -Presents carefully chosen topics such as Gaussian and Markovian processes, Markov chains, Poisson processes, Brownian motion, and queueing theory -Examines in detail special diffusion processes, with implications for finance, various generalizations of Poisson processes, and renewal processes -Serves graduate students in a variety of disciplines such as applied mathematics, operations research, engineering, finance, and business administration -Contains numerous examples and approximately 350 advanced problems, reinforcing both concepts and applications -Includes entertaining mini-biographies of mathematicians, giving an enriching historical context -Covers basic results in probability Two appendices with statistical tables and solutions to the even-numbered problems are included at the end. This textbook is for graduate students in applied mathematics, operations research, and engineering. Pure mathematics students interested in the applications of probability and stochastic processes and students in business administration will also find this book useful.
Adventures in Stochastic Processes

Author: Sidney I. Resnick
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-12-11
Stochastic processes are necessary ingredients for building models of a wide variety of phenomena exhibiting time varying randomness. In a lively and imaginative presentation, studded with examples, exercises, and applications, and supported by inclusion of computational procedures, the author has created a textbook that provides easy access to this fundamental topic for many students of applied sciences at many levels. With its carefully modularized discussion and crystal clear differentiation between rigorous proof and plausibility argument, it is accessible to beginners but flexible enough to serve as well those who come to the course with strong backgrounds. The prerequisite background for reading the book is a graduate level pre-measure theoretic probability course. No knowledge of measure theory is presumed and advanced notions of conditioning are scrupulously avoided until the later chapters of the book. The tools of applied probability---discrete spaces, Markov chains, renewal theory, point processes, branching processes, random walks, Brownian motion---are presented to the reader in illuminating discussion. Applications include such topics as queuing, storage, risk analysis, genetics, inventory, choice, economics, sociology, and other. Because of the conviction that analysts who build models should know how to build them for each class of process studied, the author has included such constructions.