Top Polarization Measurement In Single Top Quark Production With The Atlas Detector

Download Top Polarization Measurement In Single Top Quark Production With The Atlas Detector PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Top Polarization Measurement In Single Top Quark Production With The Atlas Detector book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Top Polarization Measurement in Single Top Quark Production with the ATLAS Detector

The top quark polarization in electroweak production for single top t-channel allows to test the structure of the Wtb vertex: the left-handed vector coupling of the Standard Model (SM) as well as the anomalous couplings including the right-handed vector, the left-handed tensor and the right-handed tensor couplings. The 4.7 fb-1 data recorded by the ATLAS detector at the LHC with the center of mass energy at 7 TeV in 2011 provides a chance to measure the top polarization. This thesis discusses the measurement of the top polarization by studying the polarized angular distributions in specific bases with t-channel single top events. In the beginning of the thesis, a theoretical context of the top quark production via the strong interaction and the electroweak interaction at the LHC is introduced. Then the detector, the reconstruction performances as well as the event selections with a single top t-channel event signature are described. To measure the top polarization, the unfolding and folding methods are constructed and tested with different configurations. In the end, the measured results are examined with the estimated uncertainties from the theory, the detector response and modeling as well as the statistics. This is the first measurement of the top polarization with the ATLAS detector. The results are compatible with the SM predictions and contribute signicantly to constrain the anomalous couplings in the Wtb vertex.
Higgs Properties at the LHC

This thesis studies the properties of the Higgs particle, discovered at the Large Hadron Collider (LHC) in 2012, in order to elucidate its role in electroweak symmetry breaking and cosmological phase transition in the early universe. It shows that a generic spin-2 Higgs impostor is excluded by the precision measurements of electroweak observables and perturbative unitarity considerations. It obtains LHC constraints on anomalous CP-violating Higgs-Top Yukawa couplings and examines the prospects of their measurement in future experiments. Lastly, it discusses in detail the electroweak phase transition and generation of cosmological matter–antimatter asymmetry in the universe with anomalous Higgs couplings.
Spin Correlations in tt Events from pp Collisions

This thesis introduces readers to the Standard Model, the top quark and its properties, before explaining the concept of spin correlation measurement. The first measurement of top quark spin correlations at the LHC in the lepton+jets decay channel is presented. As the heaviest elementary particle, the top quark plays an essential role in the Standard Model of elementary particle physics. In the case of top quarks being produced in pairs at hadron colliders, the Standard Model predicts their spins to be correlated. The degree of correlation depends on both the production mechanism and properties of the top quark. Any deviation from the Standard Model prediction can be an indicator for new physics phenomena. The thesis employs an advanced top quark reconstruction algorithm including dedicated identification of the up- and down-type quarks from the W boson decay.