Top 10 Challenges Of Big Data Analytics

Download Top 10 Challenges Of Big Data Analytics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Top 10 Challenges Of Big Data Analytics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Top 10 Challenges of Big Data Analytics

Author: Maria José Sousa
language: en
Publisher: Nova Science Publishers
Release Date: 2021
"The application of big data analytics in all fields of research is a critical driver for the competitiveness of all countries in the modern world. Currently, governments and industry generate large amounts of data driven by record keeping, compliance, regulations, data privacy, and dynamic requirements, and thus there is a need to create better mechanisms to analyse data, and hence support organizational development, as well as providing aid to policymakers' decision-making processes. In this context, there are emerging disruptive opportunities because of Big Data: new business models, and vertical industry segments will emerge through shared relationships with all the stakeholders, and big data analytics is a major asset to support these dynamic relationships. This book was developed with the objective of analysing some of those challenges while at the same time providing a perspective of the potential of big data analytics, and the importance that analytics have for managers and for policymakers, to help define new strategies and new public policies, respectively. The book is focused on different sectors of activity (i.e. the Health sector, Public Administration, the Education sector, among others), and on different economic dimensions (i.e. Entrepreneurship, and Innovation) and links big data analytics to different fields of research, such as artificial intelligence and other emergent technologies; which are challenging organisations, governments, and societies, with the need to face the new imperative of being prepared for the very uncertain and tremendously complex future - in which big data analytics will play a very decisive and active role"--
Big Data Analytics in Healthcare

This book includes state-of-the-art discussions on various issues and aspects of the implementation, testing, validation, and application of big data in the context of healthcare. The concept of big data is revolutionary, both from a technological and societal well-being standpoint. This book provides a comprehensive reference guide for engineers, scientists, and students studying/involved in the development of big data tools in the areas of healthcare and medicine. It also features a multifaceted and state-of-the-art literature review on healthcare data, its modalities, complexities, and methodologies, along with mathematical formulations. The book is divided into two main sections, the first of which discusses the challenges and opportunities associated with the implementation of big data in the healthcare sector. In turn, the second addresses the mathematical modeling of healthcare problems, as well as current and potential future big data applications and platforms.
Handbook on Intelligent Healthcare Analytics

HANDBOOK OF INTELLIGENT HEALTHCARE ANALYTICS The book explores the various recent tools and techniques used for deriving knowledge from healthcare data analytics for researchers and practitioners. The power of healthcare data analytics is being increasingly used in the industry. Advanced analytics techniques are used against large data sets to uncover hidden patterns, unknown correlations, market trends, customer preferences, and other useful information. A Handbook on Intelligent Healthcare Analytics covers both the theory and application of the tools, techniques, and algorithms for use in big data in healthcare and clinical research. It provides the most recent research findings to derive knowledge using big data analytics, which helps to analyze huge amounts of real-time healthcare data, the analysis of which can provide further insights in terms of procedural, technical, medical, and other types of improvements in healthcare. In addition, the reader will find in this Handbook: Innovative hybrid machine learning and deep learning techniques applied in various healthcare data sets, as well as various kinds of machine learning algorithms existing such as supervised, unsupervised, semi-supervised, reinforcement learning, and guides how readers can implement the Python environment for machine learning; An exploration of predictive analytics in healthcare; The various challenges for smart healthcare, including privacy, confidentiality, authenticity, loss of information, attacks, etc., that create a new burden for providers to maintain compliance with healthcare data security. In addition, this book also explores various sources of personalized healthcare data and the commercial platforms for healthcare data analytics. Audience Healthcare professionals, researchers, and practitioners who wish to figure out the core concepts of smart healthcare applications and the innovative methods and technologies used in healthcare will all benefit from this book.