Timed Boolean Functions


Download Timed Boolean Functions PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Timed Boolean Functions book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Timed Boolean Functions


Timed Boolean Functions

Author: William K.C. Lam

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





Timing research in high performance VLSI systems has advanced at a steady pace over the last few years, while tools, especially theoretical mechanisms, lag behind. Much present timing research relies heavily on timing diagrams, which, although intuitive, are inadequate for analysis of large designs with many parameters. Further, timing diagrams offer only approximations, not exact solutions, to many timing problems and provide little insight in the cases where temporal properties of a design interact intricately with the design's logical functionalities. This book presents a methodology for timing research which facilitates analy sis and design of circuits and systems in a unified temporal and logical domain. In the first part, we introduce an algebraic representation formalism, Timed Boolean Functions (TBF's), which integrates both logical and timing informa tion of digital circuits and systems into a single formalism. We also give a canonical form, TBF BDD's, for them, which can be used for efficient ma nipulation. In the second part, we apply Timed Boolean Functions to three problems in timing research, for which exact solutions are obtained for the first time: 1. computing the exact delays of combinational circuits and the minimum cycle times of finite state machines, 2. analysis and synthesis of wavepipelining circuits, a high speed architecture for which precise timing relations between signals are essential for correct operations, 3. verification of circuit and system performance and coverage of delay faults by testing.

Integrated Circuit Design: Power and Timing Modeling, Optimization and Simulation


Integrated Circuit Design: Power and Timing Modeling, Optimization and Simulation

Author: Dimitrios Soudris

language: en

Publisher: Springer

Release Date: 2003-06-29


DOWNLOAD





This book constitutes the refereed proceedings of the 10th International Workshop on Power and Timing Modeling, Optimization and Simulation, PATMOS 2000, held in Göttingen, Germany in September 2000. The 33 revised full papers presented were carefully reviewed and selected for inclusion in the book. The papers are organized in sections on RTL power modeling, power estimation and optimization, system-level design, transistor level design, asynchronous circuit design, power efficient technologies, design of multimedia processing applications, adiabatic design and arithmetic modules, and analog-digital circuit modeling.

A Unified Approach for Timing Verification and Delay Fault Testing


A Unified Approach for Timing Verification and Delay Fault Testing

Author: Mukund Sivaraman

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-09-17


DOWNLOAD





Large system complexities and operation under tight timing constraints in rapidly shrinking technologies have made it extremely important to ensure correct temporal behavior of modern-day digital circuits, both before and after fabrication. Research in (pre-fabrication) timing verification and (post-fabrication) delay fault testing has evolved along largely disjoint lines in spite of the fact that they share many basic concepts. A Unified Approach for Timing Verification and Delay Fault Testing applies concepts developed in the context of delay fault testing to path sensitization, which allows an accurate timing analysis mechanism to be developed. This path sensitization strategy is further applied for efficient delay fault diagnosis and delay fault coverage estimation. A new path sensitization strategy called Signal Stabilization Time Analysis (SSTA) has been developed based on the fact that primitive PDFs determine the stabilization time of the circuit outputs. This analysis has been used to develop a feasible method of identifying the primitive PDFs in a general multi-level logic circuit. An approach to determine the maximum circuit delay using this primitive PDF identification mechanism is also presented. The Primitive PDF Identification-based Timing Analysis (PITA) approach is proved to determine the maximum floating mode circuit delay exactly under any component delay model, and provides several advantages over previously floating mode timing analyzers. A framework for the diagnosis of circuit failures caused by distributed path delay faults is also presented. A metric to quantify the diagnosability of a path delay fault for a test is also proposed. Finally, the book presents a very realistic metric for delay fault coverage which accounts for delay fault size distributions and is applicable to any delay fault model. A Unified Approach for Timing Verification and Delay Fault Testing will be of interest to university and industry researchers in timing analysis and delay fault testing as well as EDA tool development engineers and design verification engineers dealing with timing issues in ULSI circuits. The book should also be of interest to digital designers and others interested in knowing the state of the art in timing verification and delay fault testing.