Time Reversibility Computer Simulation Algorithms Chaos 2nd Edition

Download Time Reversibility Computer Simulation Algorithms Chaos 2nd Edition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Time Reversibility Computer Simulation Algorithms Chaos 2nd Edition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Time Reversibility, Computer Simulation, Algorithms, Chaos (2nd Edition)

Author: William Graham Hoover
language: en
Publisher: World Scientific
Release Date: 2012-06-11
A small army of physicists, chemists, mathematicians, and engineers has joined forces to attack a classic problem, the “reversibility paradox”, with modern tools. This book describes their work from the perspective of computer simulation, emphasizing the authors' approach to the problem of understanding the compatibility, and even inevitability, of the irreversible second law of thermodynamics with an underlying time-reversible mechanics. Computer simulation has made it possible to probe reversibility from a variety of directions and “chaos theory” or “nonlinear dynamics” has supplied a useful vocabulary and a set of concepts, which allow a fuller explanation of irreversibility than that available to Boltzmann or to Green, Kubo and Onsager. Clear illustration of concepts is emphasized throughout, and reinforced with a glossary of technical terms from the specialized fields which have been combined here to focus on a common theme.The book begins with a discussion, contrasting the idealized reversibility of basic physics against the pragmatic irreversibility of real life. Computer models, and simulation, are next discussed and illustrated. Simulations provide the means to assimilate concepts through worked-out examples. State-of-the-art analyses, from the point of view of dynamical systems, are applied to many-body examples from nonequilibrium molecular dynamics and to chaotic irreversible flows from finite-difference, finite-element, and particle-based continuum simulations. Two necessary concepts from dynamical-systems theory — fractals and Lyapunov instability — are fundamental to the approach.Undergraduate-level physics, calculus, and ordinary differential equations are sufficient background for a full appreciation of this book, which is intended for advanced undergraduates, graduates, and research workers. The generous assortment of examples worked out in the text will stimulate readers to explore the rich and fruitful field of study which links fundamental reversible laws of physics to the irreversibility surrounding us all.This expanded edition stresses and illustrates computer algorithms with many new worked-out examples, and includes considerable new material on shockwaves, Lyapunov instability and fluctuations.
Time Reversibility, Computer Simulation, Algorithms, Chaos

The book begins with a discussion, contrasting the idealized reversibility of basic physics against the pragmatic irreversibility of real life. Computer models, and simulation, are next discussed and illustrated. Simulations provide the means to assimilate concepts through worked-out examples. State-of-the-art analyses, from the point of view of dynamical systems, are applied to many-body examples from nonequilibrium molecular dynamics and to chaotic irreversible flows from finite-difference, finite-element, and particle-based continuum simulations. Two necessary concepts from dynamical-systems theory - fractals and Lyapunov instability - are fundamental to the approach. Undergraduate-level physics, calculus, and ordinary differential equations are sufficient background for a full appreciation of this book, which is intended for advanced undergraduates, graduates, and research workers.
Simulation And Control Of Chaotic Nonequilibrium Systems: With A Foreword By Julien Clinton Sprott

Author: William Graham Hoover
language: en
Publisher: World Scientific Publishing Company
Release Date: 2015-02-02
This book aims to provide a lively working knowledge of the thermodynamic control of microscopic simulations, while summarizing the historical development of the subject, along with some personal reminiscences. Many computational examples are described so that they are well-suited to learning by doing. The contents enhance the current understanding of the reversibility paradox and are accessible to advanced undergraduates and researchers in physics, computation, and irreversible thermodynamics.