Time Optimal Trajectory Planning For Redundant Robots

Download Time Optimal Trajectory Planning For Redundant Robots PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Time Optimal Trajectory Planning For Redundant Robots book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Time-Optimal Trajectory Planning for Redundant Robots

This master’s thesis presents a novel approach to finding trajectories with minimal end time for kinematically redundant manipulators. Emphasis is given to a general applicability of the developed method to industrial tasks such as gluing or welding. Minimum-time trajectories may yield economic advantages as a shorter trajectory duration results in a lower task cycle time. Whereas kinematically redundant manipulators possess increased dexterity, compared to conventional non-redundant manipulators, their inverse kinematics is not unique and requires further treatment. In this work a joint space decomposition approach is introduced that takes advantage of the closed form inverse kinematics solution of non-redundant robots. Kinematic redundancy can be fully exploited to achieve minimum-time trajectories for prescribed end-effector paths.
Optimal Path and Trajectory Planning for Serial Robots

Alexander Reiter describes optimal path and trajectory planning for serial robots in general, and rigorously treats the challenging application of path tracking for kinematically redundant manipulators therein in particular. This is facilitated by resolving both the path tracking task and the optimal inverse kinematics problem simultaneously. Furthermore, the author presents methods for fast computation of approximate optimal solutions to planning problems with changing parameters. With an optimal solution to a nominal problem, an iterative process based on parametric sensitivities is applied to rapidly obtain an approximate solution. About the Author: Dr. Alexander Reiter is a senior scientist at the Institute of Robotics of the Johannes Kepler University (JKU) Linz, Austria. His major fields of research are kinematics, dynamics, and trajectory planning for kinematically redundant serial robots as well as real-time methods for solving parametric non-linear programming problems.
Robot Manipulator Redundancy Resolution

Introduces a revolutionary, quadratic-programming based approach to solving long-standing problems in motion planning and control of redundant manipulators This book describes a novel quadratic programming approach to solving redundancy resolutions problems with redundant manipulators. Known as ``QP-unified motion planning and control of redundant manipulators'' theory, it systematically solves difficult optimization problems of inequality-constrained motion planning and control of redundant manipulators that have plagued robotics engineers and systems designers for more than a quarter century. An example of redundancy resolution could involve a robotic limb with six joints, or degrees of freedom (DOFs), with which to position an object. As only five numbers are required to specify the position and orientation of the object, the robot can move with one remaining DOF through practically infinite poses while performing a specified task. In this case redundancy resolution refers to the process of choosing an optimal pose from among that infinite set. A critical issue in robotic systems control, the redundancy resolution problem has been widely studied for decades, and numerous solutions have been proposed. This book investigates various approaches to motion planning and control of redundant robot manipulators and describes the most successful strategy thus far developed for resolving redundancy resolution problems. Provides a fully connected, systematic, methodological, consecutive, and easy approach to solving redundancy resolution problems Describes a new approach to the time-varying Jacobian matrix pseudoinversion, applied to the redundant-manipulator kinematic control Introduces The QP-based unification of robots' redundancy resolution Illustrates the effectiveness of the methods presented using a large number of computer simulation results based on PUMA560, PA10, and planar robot manipulators Provides technical details for all schemes and solvers presented, for readers to adopt and customize them for specific industrial applications Robot Manipulator Redundancy Resolution is must-reading for advanced undergraduates and graduate students of robotics, mechatronics, mechanical engineering, tracking control, neural dynamics/neural networks, numerical algorithms, computation and optimization, simulation and modelling, analog, and digital circuits. It is also a valuable working resource for practicing robotics engineers and systems designers and industrial researchers.