Time Lags In Biological Models

Download Time Lags In Biological Models PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Time Lags In Biological Models book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Time Lags in Biological Models

Author: N. MacDonald
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-03-08
In many biological models it is necessary to allow the rates of change of the variables to depend on the past history, rather than only the current values, of the variables. The models may require discrete lags, with the use of delay-differential equations, or distributed lags, with the use of integro-differential equations. In these lecture notes I discuss the reasons for including lags, especially distributed lags, in biological models. These reasons may be inherent in the system studied, or may be the result of simplifying assumptions made in the model used. I examine some of the techniques available for studying the solution of the equations. A large proportion of the material presented relates to a special method that can be applied to a particular class of distributed lags. This method uses an extended set of ordinary differential equations. I examine the local stability of equilibrium points, and the existence and frequency of periodic solutions. I discuss the qualitative effects of lags, and how these differ according to the choice of discrete or distributed lag. The models studied are drawn from the population dynamiCS of single species (logistic growth, the chemostat) and of interacting pairs of species (predation, mutualism), from cell population dynamiCS (haemopoiesis) and from biochemical kinetics (the Goodwin oscillator). The last chapter is devoted to a population model employing difference equations. All these models include non-linear terms.
Biological Delay Systems

Author: Norman MacDonald
language: en
Publisher: Cambridge University Press
Release Date: 2008-01-03
In studying the dynamics of populations, whether of animals, plants or cells, it is crucial to allow for delays such as those due to gestation, maturation or transport. This book deals with a fundamental question in the analysis of the effects of delays, namely whether they affect the stability of steady states.
Optimal Control Applied to Biological Models

From economics and business to the biological sciences to physics and engineering, professionals successfully use the powerful mathematical tool of optimal control to make management and strategy decisions. Optimal Control Applied to Biological Models thoroughly develops the mathematical aspects of optimal control theory and provides insight into the application of this theory to biological models. Focusing on mathematical concepts, the book first examines the most basic problem for continuous time ordinary differential equations (ODEs) before discussing more complicated problems, such as variations of the initial conditions, imposed bounds on the control, multiple states and controls, linear dependence on the control, and free terminal time. In addition, the authors introduce the optimal control of discrete systems and of partial differential equations (PDEs). Featuring a user-friendly interface, the book contains fourteen interactive sections of various applications, including immunology and epidemic disease models, management decisions in harvesting, and resource allocation models. It also develops the underlying numerical methods of the applications and includes the MATLAB® codes on which the applications are based. Requiring only basic knowledge of multivariable calculus, simple ODEs, and mathematical models, this text shows how to adjust controls in biological systems in order to achieve proper outcomes.