Time Dependent Switched Discrete Time Linear Systems Control And Filtering

Download Time Dependent Switched Discrete Time Linear Systems Control And Filtering PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Time Dependent Switched Discrete Time Linear Systems Control And Filtering book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Time-Dependent Switched Discrete-Time Linear Systems: Control and Filtering

This book focuses on the basic control and filtering synthesis problems for discrete-time switched linear systems under time-dependent switching signals. Chapter 1, as an introduction of the book, gives the backgrounds and motivations of switched systems, the definitions of the typical time-dependent switching signals, the differences and links to other types of systems with hybrid characteristics and a literature review mainly on the control and filtering for the underlying systems. By summarizing the multiple Lyapunov-like functions (MLFs) approach in which different requirements on comparisons of Lyapunov function values at switching instants, a series of methodologies are developed for the issues on stability and stabilization, and l2-gain performance or tube-based robustness for l∞ disturbance, respectively, in Chapters 2 and 3. Chapters 4 and 5 are devoted to the control and filtering problems for the time-dependent switched linear systems with either polytopic uncertainties or measurable time-varying parameters in different sense of disturbances. The asynchronous switching problem, where there is time lag between the switching of the currently activated system mode and the controller/filter to be designed, is investigated in Chapter 6. The systems with various time delays under typical time-dependent switching signals are addressed in Chapter 7.
Analysis and Synthesis for Discrete-Time Switched Systems

This book presents recent theoretical advances in the analysis and synthesis of discrete-time switched systems under the time-dependent switching scheme, including stability and disturbance attenuation performance analysis, control and filtering, asynchronous switching, finite-time analysis and synthesis, and reachable set estimation. It discusses time-scheduled technology, which can achieve a better performance and reduce conservatism compared with the traditional time-independent approach. Serving as a reference resource for researchers and engineers in the system and control community, it is also useful for graduate and undergraduate students interested in switched systems and their applications.
Fault-Tolerant Control for Time-Varying Delayed T-S Fuzzy Systems

This book delves into the complexities of fault estimation and fault-tolerant control for nonlinear time-delayed systems. Through the use of multiple-integral observers, it addresses fault estimation and active fault-tolerant control for time-delayed fuzzy systems with actuator faults and both actuator and sensor faults. Additionally, the book explores the use of sliding mode control to solve issues of sensor fault estimation, intermittent actuator fault estimation, and active fault-tolerant control for time-delayed switched fuzzy systems. Furthermore, it presents the use of H∞ guaranteed cost control for both time-delayed switched fuzzy systems and time-delayed switched fuzzy stochastic systems with intermittent actuator and sensor faults. Finally, the problem of delay-dependent finite-time fault-tolerant control for uncertain switched T-S fuzzy systems with multiple time-varying delays, intermittent process faults and intermittent sensor faults is studied. The research on fault estimation and tolerant control has drawn attention from engineers and scientists in various fields such as electrical, mechanical, aerospace, chemical, and nuclear engineering. The book provides a comprehensive framework for this topic, placing a strong emphasis on the importance of stability analysis and the impact of result conservatism on the design and implementation of observers and controllers. It is intended for undergraduate and graduate students interested in fault diagnosis and tolerant control technology, researchers studying time-varying delayed T-S fuzzy systems, and observer/controller design engineers working on system stability applications.