Three Particle Physics And Dispersion Relation Theory

Download Three Particle Physics And Dispersion Relation Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Three Particle Physics And Dispersion Relation Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Three-particle Physics And Dispersion Relation Theory

The necessity of describing three-nucleon and three-quark systems have led to a constant interest in the problem of three particles. The question of including relativistic effects appeared together with the consideration of the decay amplitude in the framework of the dispersion technique. The relativistic dispersion description of amplitudes always takes into account processes connected with the investigated reaction by the unitarity condition or by virtual transitions; in the case of three-particle processes they are, as a rule, those where other many-particle states and resonances are produced. The description of these interconnected reactions and ways of handling them is the main subject of the book.
Particle Physics: An Introduction

Particle Physics: An Introduction provides information pertinent to particle physics, including symmetries, quantum mechanics, particle kinematics, and wave equations. This book explains the Lorentz transformation, which relates events as seen in two inertial coordinate systems. Comprised of 12 chapters, this book starts with an overview of the general relationship between energy and momentum. This text then explains the various components of the electric and magnetic fields, which are related by Maxwell's equations. Other chapters review the abstract formalism of quantum mechanics as well as explain the functions of cross sections and decay rates in particle physics. This book discusses as well the function of quantum field theory in predicting S-matrix elements and cross sections that can be compared with experiments. The final chapter deals with strong interaction dynamics as well as introduces Regge poles and dispersion relations. Seniors and graduate students involved in the study of physics will find this book extremely useful.