Theory Of Simple Liquids

Download Theory Of Simple Liquids PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Theory Of Simple Liquids book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Theory of Simple Liquids

Comprehensive coverage of topics in the theory of classical liquids Widely regarded as the standard text in its field, Theory of Simple Liquids gives an advanced but self-contained account of liquid state theory within the unifying framework provided by classical statistical mechanics. The structure of this revised and updated Fourth Edition is similar to that of the previous one but there are significant shifts in emphasis and much new material has been added. Major changes and Key Features in content include: - Expansion of existing sections on simulation methods, liquid-vapour coexistence, the hierarchical reference theory of criticality, and the dynamics of super-cooled liquids. - New sections on binary fluid mixtures, surface tension, wetting, the asymptotic decay of pair correlations, fluids in porous media, the thermodynamics of glasses, and fluid flow at solid surfaces. - An entirely new chapter on applications to 'soft matter' of a combination of liquid state theory and coarse graining strategies, with sections on polymer solutions and polymer melts, colloidal dispersions, colloid-polymer mixtures, lyotropic liquid crystals, colloidal dynamics, and on clustering and gelation. - Expansion of existing sections on simulation methods, liquid-vapour coexistence, the hierarchian reference of criticality, and the dynamics of super-cooled liquids. - New sections on binary fluid mixtures, surface tension, wetting, the asymptotic decay of pair correlations, fluids in porous media, the thermodynamics of glasses, and fluid flow at solid surfaces. - An entirely new chapter on applications to 'soft matter' of a combination of liquid state theory and coarse graining strategies, with sections on polymer solutions and polymer melts, colloidal dispersions, colloid-polymer mixtures, lyotropic liquid crystals, colloidal dynamics, and on clustering and gelation.
Theory of Simple Liquids

This book gives a comprehensive and up-to-date treatment of the theory of "simple" liquids. The new second edition has been rearranged and considerably expanded to give a balanced account both of basic theory and of the advances of the past decade. It presents the main ideas of modern liquid state theory in a way that is both pedagogical and self-contained. The book should be accessible to graduate students and research workers, both experimentalists and theorists, who have a good background in elementary mechanics. - Compares theoretical deductions with experimental results - Molecular dynamics - Monte Carlo computations - Covers ionic, metallic, and molecular liquids
Theory of Simple Liquids

The third edition of Theory of Simple Liquids is an updated, advanced, but self-contained introduction to the principles of liquid-state theory. It presents the modern, molecular theory of the structural, thermodynamic interfacial and dynamical properties of the liquid phase of materials constituted of atoms, small molecules or ions. This book leans on concepts and methods form classical Statistical Mechanics in which theoretical predictions are systematically compared with experimental data and results from numerical simulations. The overall layout of the book is similar to that of the previous two editions however, there are considerable changes in emphasis and several key additions including:•up-to-date presentation of modern theories of liquid-vapour coexistence and criticality•areas of considerable present and future interest such as super-cooled liquids and the glass transition•the area of liquid metals, which has grown into a mature subject area, now presented as part of the chapter ionic liquids•Provides cutting-edge research in the principles of liquid-state theory•Includes frequent comparisons of theoretical predictions with experimental and simulation data•Suitable for researchers and post-graduates in the field of condensed matter science (Physics, Chemistry, Material Science), biophysics as well as those in the oil industry