Theory Concepts And Methods Of Recurrent Neural Networks And Soft Computing


Download Theory Concepts And Methods Of Recurrent Neural Networks And Soft Computing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Theory Concepts And Methods Of Recurrent Neural Networks And Soft Computing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Theory, Concepts and Methods of Recurrent Neural Networks and Soft Computing


Theory, Concepts and Methods of Recurrent Neural Networks and Soft Computing

Author: Jeremy Rogerson

language: en

Publisher:

Release Date: 2015-02-18


DOWNLOAD





Advanced information regarding the theory, concepts and applications of recurrent neural networks and the field of soft computing has been highlighted in this elaborative book. A broad spectrum of topics is encompassed in this book like neural networks and static modelling, neuro-fuzzy digital filter, ranking indices for fuzzy numbers, controller designs for nonlinear dynamic systems, etc. The aim of this book is to serve as a valuable source of reference for a wide range of readers including scientists, researchers and students. It consists of contributions made by veteran researchers from across the globe.

Deep Learning Applications, Volume 2


Deep Learning Applications, Volume 2

Author: M. Arif Wani

language: en

Publisher: Springer Nature

Release Date: 2020-09-24


DOWNLOAD





This book presents selected papers from the 18th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2019). It focuses on deep learning networks and their application in domains such as healthcare, security and threat detection, fault diagnosis and accident analysis, and robotic control in industrial environments, and highlights novel ways of using deep neural networks to solve real-world problems. Also offering insights into deep learning architectures and algorithms, it is an essential reference guide for academic researchers, professionals, software engineers in industry, and innovative product developers.

Neural Networks and Deep Learning


Neural Networks and Deep Learning

Author: Charu C. Aggarwal

language: en

Publisher: Springer

Release Date: 2018-08-25


DOWNLOAD





This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.