Theory Af Linear Models And Multivariate Analysis

Download Theory Af Linear Models And Multivariate Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Theory Af Linear Models And Multivariate Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
The Theory of Linear Models and Multivariate Analysis

Basic statistical definitions and theorems. Subspaces and projections. Properties of the multivariate and spherical normal distributions. Introduction to linear models. A sufficient statistic. Estimation. Tests about the mean. Simultaneous confidence intervals - scheffe type. Tests about the variance. Asymptotic validity of procedures under nonnormal distributions. James-Stein and Ridge estimators. Inference based on the studentized range distribution and bonferroni's inequality. The generalized linear model. The repeated measures model. Random effects and mixed models. The correlation model. The distribution theory for multivariate analysis. The multivariate one-and two-sample models - inference about the mean vector. The multivariate linear model. Discriminant analysis. Testing hypotheses about the covariance matrix. Simplifying the structure of the covariance matrix.
Applied Multivariate Analysis

Author: Neil H. Timm
language: en
Publisher: Springer Science & Business Media
Release Date: 2007-06-21
Univariate statistical analysis is concerned with techniques for the analysis of a single random variable. This book is about applied multivariate analysis. It was written to p- vide students and researchers with an introduction to statistical techniques for the ana- sis of continuous quantitative measurements on several random variables simultaneously. While quantitative measurements may be obtained from any population, the material in this text is primarily concerned with techniques useful for the analysis of continuous obser- tions from multivariate normal populations with linear structure. While several multivariate methods are extensions of univariate procedures, a unique feature of multivariate data an- ysis techniques is their ability to control experimental error at an exact nominal level and to provide information on the covariance structure of the data. These features tend to enhance statistical inference, making multivariate data analysis superior to univariate analysis. While in a previous edition of my textbook on multivariate analysis, I tried to precede a multivariate method with a corresponding univariate procedure when applicable, I have not taken this approach here. Instead, it is assumed that the reader has taken basic courses in multiple linear regression, analysis of variance, and experimental design. While students may be familiar with vector spaces and matrices, important results essential to multivariate analysis are reviewed in Chapter 2. I have avoided the use of calculus in this text.