Theoretical Prediction Of Properties Of Atomistic Systems


Download Theoretical Prediction Of Properties Of Atomistic Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Theoretical Prediction Of Properties Of Atomistic Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Theoretical prediction of properties of atomistic systems


Theoretical prediction of properties of atomistic systems

Author: Alexander Lindmaa

language: en

Publisher: Linköping University Electronic Press

Release Date: 2017-08-15


DOWNLOAD





The prediction of ground state properties of atomistic systems is of vital importance in technological advances as well as in the physical sciences. Fundamentally, these predictions are based on a quantum-mechanical description of many-electron systems. One of the hitherto most prominent theories for the treatment of such systems is density functional theory (DFT). The main reason for its success is due to its balance of acceptable accuracy with computational efficiency. By now, DFT is applied routinely to compute the properties of atomic, molecular, and solid state systems. The general approach to solve the DFT equations is to use a density-functional approximation (DFA). In Kohn-Sham (KS) DFT, DFAs are applied to the unknown exchangecorrelation (xc) energy. In orbital-free DFT on the other hand, where the total energy is minimized directly with respect to the electron density, a DFA applied to the noninteracting kinetic energy is also required. Unfortunately, central DFAs in DFT fail to qualitatively capture many important aspects of electronic systems. Two prime examples are the description of localized electrons, and the description of systems where electronic edges are present. In this thesis, I use a model system approach to construct a DFA for the electron localization function (ELF). The very same approach is also taken to study the non-interacting kinetic energy density (KED) in the slowly varying limit of inhomogeneous electron densities, where the effect of electronic edges are effectively included. Apart from the work on model systems, extensions of an exchange energy functional with an improved KS orbital description are presented: a scheme for improving its description of energetics of solids, and a comparison of its description of an essential exact exchange feature known as the derivative discontinuity with numerical data for exact exchange. An emerging alternative route towards the prediction of the properties of atomistic systems is machine learning (ML). I present a number of ML methods for the prediction of solid formation energies, with an accuracy that is on par with KS DFT calculations, and with orders-of-magnitude lower computational cost. Att kunna förutsäga egenskaper hos atomistiska system utgör en viktigdel av vår teknologiska utveckling, samt spelar en betydande roll i defysikaliska vetenskaperna. Sådana förutsägelser bygger på en kvantmekaniskbeskrivning av mångelektronsystem. En av de mest framståendeteorierna för att behandla den här typen av system är täthetsfunktionalteorin(DFT). Den främsta orsaken till dess framgång är attden lyckas kombinera skaplig noggrannhet med en bra beräkningseffektivitet.DFT används numera rutinmässigt för att beräkna storheterhos atomer, molekyler, och fasta kroppar. Generellt sett löses ekvationerna inom DFT genom att man inför entäthetsfunktionalapproximation (DFA). I Kohn-Sham (KS) DFT, användsDFAer för att approximera utbytes-korrelationsenergin. Inom orbitalfriDFT, där målet är att direkt minimera den totala energin med avseendepå elektrontätheten, så approximerar man också den icke-interageranderörelseenergin hos elektronerna. Dessvärre så fallerar många centralaDFAer att kvalitativt beskriva många viktiga aspekter hos elektronsystem.Två viktiga exempel är beskrivningen av lokaliserade elektroner,samt beskrivningen av system där det förekommer elektronytor. I denna avhandling använder jag modellsystem för att konstruera enDFAför elektronlokaliseringsfunktionen (ELF). Samma tillvägagångssättappliceras sedan för att studera den kinetiska energitätheten i gränsen avlångsamt varierande elektrontätheter, där effekten av elektronytor effektivtinkluderas. Förutom arbetet som berör modellsystem, så presenterasen utökad variant av en utbytes-energifunktional med en förbättrad KSorbitalbeskrivning: ett schema för att förbättra dess energiegenskaperför solida material, samt en jämförelse av dess beskrivning av en viktigegenskap hos den exakta utbytesenergin, vilket utgörs av diskontinuiteteri dess derivata. Ett mera nyligen uppkommet samt alternativt sätt att kunna förutsägaegenskaper hos atomistiska system utgörs av maskinlärning (ML).Jag presenterar ett antal ML-modeller för att kunna förutsäga formeringsenergierhos fasta material med en noggrannhet som är i linje medresultat som uppnås av beräkningar med hjälp av KS DFT, och med enberäkningseffektivitet som är flera storleksordningar snabbare.

Electrocatalysis


Electrocatalysis

Author: Richard C. Alkire

language: en

Publisher: John Wiley & Sons

Release Date: 2013-12-16


DOWNLOAD





Catalysts speed up a chemical reaction or allow for reactions to take place that would not otherwise occur. The chemical nature of a catalyst and its structure are crucial for interactions with reaction intermediates. An electrocatalyst is used in an electrochemical reaction, for example in a fuel cell to produce electricity. In this case, reaction rates are also dependent on the electrode potential and the structure of the electrical double-layer. This work provides a valuable overview of this rapidly developing field by focusing on the aspects that drive the research of today and tomorrow. Key topics are discussed by leading experts, making this book a must-have for many scientists of the field with backgrounds in different disciplines, including chemistry, physics, biochemistry, engineering as well as surface and materials science. This book is volume XIV in the series "Advances in Electrochemical Sciences and Engineering".

Optimised Projections for the Ab Initio Simulation of Large and Strongly Correlated Systems


Optimised Projections for the Ab Initio Simulation of Large and Strongly Correlated Systems

Author: David D. O'Regan

language: en

Publisher: Springer Science & Business Media

Release Date: 2011-09-24


DOWNLOAD





Density functional theory (DFT) has become the standard workhorse for quantum mechanical simulations as it offers a good compromise between accuracy and computational cost. However, there are many important systems for which DFT performs very poorly, most notably strongly-correlated materials, resulting in a significant recent growth in interest in 'beyond DFT' methods. The widely used DFT+U technique, in particular, involves the addition of explicit Coulomb repulsion terms to reproduce the physics of spatially-localised electronic subspaces. The magnitude of these corrective terms, measured by the famous Hubbard U parameter, has received much attention but less so for the projections used to delineate these subspaces. The dependence on the choice of these projections is studied in detail here and a method to overcome this ambiguity in DFT+U, by self-consistently determining the projections, is introduced. The author shows how nonorthogonal representations for electronic states may be used to construct these projections and, furthermore, how DFT+U may be implemented with a linearly increasing cost with respect to system size. The use of nonorthogonal functions in the context of electronic structure calculations is extensively discussed and clarified, with new interpretations and results, and, on this topic, this work may serve as a reference for future workers in the field.