Theoretical Aspects Of Neurocomputing

Download Theoretical Aspects Of Neurocomputing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Theoretical Aspects Of Neurocomputing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Aspects and Prospects of Theoretical Computer Science

Author: Jürgen Dassow
language: en
Publisher: Springer Science & Business Media
Release Date: 1990-11-07
This volume contains the texts of the tutorial lecture, five invited lectures and twenty short communications contributed for presentation at the Sixth International Meeting of Young Computer Scientists, IMYCS '90. The aim of these meetings is threefold: (1) to inform on newest trends, results, and problems in theoretical computer science and related fields through a tutorial and invited lectures delivered by internationally distinguished speakers, (2) to provide a possibility for beginners in scientific work to present and discuss their results, and (3) to create an adequate opportunity for establishing first professional relations among the participants.
Information-Theoretic Aspects of Neural Networks

Information theoretics vis-a-vis neural networks generally embodies parametric entities and conceptual bases pertinent to memory considerations and information storage, information-theoretic based cost-functions, and neurocybernetics and self-organization. Existing studies only sparsely cover the entropy and/or cybernetic aspects of neural information. Information-Theoretic Aspects of Neural Networks cohesively explores this burgeoning discipline, covering topics such as: Shannon information and information dynamics neural complexity as an information processing system memory and information storage in the interconnected neural web extremum (maximum and minimum) information entropy neural network training non-conventional, statistical distance-measures for neural network optimizations symmetric and asymmetric characteristics of information-theoretic error-metrics algorithmic complexity based representation of neural information-theoretic parameters genetic algorithms versus neural information dynamics of neurocybernetics viewed in the information-theoretic plane nonlinear, information-theoretic transfer function of the neural cellular units statistical mechanics, neural networks, and information theory semiotic framework of neural information processing and neural information flow fuzzy information and neural networks neural dynamics conceived through fuzzy information parameters neural information flow dynamics informatics of neural stochastic resonance Information-Theoretic Aspects of Neural Networks acts as an exceptional resource for engineers, scientists, and computer scientists working in the field of artificial neural networks as well as biologists applying the concepts of communication theory and protocols to the functioning of the brain. The information in this book explores new avenues in the field and creates a common platform for analyzing the neural complex as well as artificial neural networks.