Theorem Proving With The Real Numbers


Download Theorem Proving With The Real Numbers PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Theorem Proving With The Real Numbers book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Theorem Proving with the Real Numbers


Theorem Proving with the Real Numbers

Author: John Robert Harrison

language: en

Publisher:

Release Date: 1996


DOWNLOAD





Abstract: "This thesis discusses the use of the real numbers in theorem proving. Typically, theorem provers only support a few 'discrete' datatypes such as the natural numbers. However the availability of the real numbers opens up many interesting and important application areas, such as the verification of floating point hardware and hybrid systems. It also allows the formalization of many more branches of classical mathematics, which is particularly relevant for attempts to inject more rigour into computer algebra systems. Our work is conducted in a version of the HOL theorem prover. We describe the rigorous definitional construction of the real numbers, using a new version of Cantor's method, and the formalization of a significant portion of real analysis. We also describe an advanced derived decision procedure for the 'Tarski subset' of real algebra as well as some more modest but practically useful tools for automating explicit calculations and routine linear arithmetic reasoning. Finally, we consider in more detail two interesting application areas. We discuss the desirability of combining the rigour of theorem provers with the power and convenience of computer algebra systems, and explain a method we have used in practice to achieve this. We then move on to the verification of floating point hardware. After a careful discussion of possible correctness specifications, we report on two case studies, one involving a transcendental function. We aim to show that a theory of real numbers is useful in practice and interesting in theory, and that the 'LCF style' of theorem proving is well suited to the kind of work we describe. We hope also to convince the reader that the kind of mathematics needed for applications is well within the abilities of current theorem proving technology."

Theorem Proving with the Real Numbers


Theorem Proving with the Real Numbers

Author: John Harrison

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





This book discusses the use of the real numbers in theorem proving. Typ ically, theorem provers only support a few 'discrete' datatypes such as the natural numbers. However the availability of the real numbers opens up many interesting and important application areas, such as the verification of float ing point hardware and hybrid systems. It also allows the formalization of many more branches of classical mathematics, which is particularly relevant for attempts to inject more rigour into computer algebra systems. Our work is conducted in a version of the HOL theorem prover. We de scribe the rigorous definitional construction of the real numbers, using a new version of Cantor's method, and the formalization of a significant portion of real analysis. We also describe an advanced derived decision procedure for the 'Tarski subset' of real algebra as well as some more modest but practically useful tools for automating explicit calculations and routine linear arithmetic reasoning. Finally, we consider in more detail two interesting application areas. We discuss the desirability of combining the rigour of theorem provers with the power and convenience of computer algebra systems, and explain a method we have used in practice to achieve this. We then move on to the verification of floating point hardware. After a careful discussion of possible correctness specifications, we report on two case studies, one involving a transcendental function.

Interactive Theorem Proving


Interactive Theorem Proving

Author: Gerwin Klein

language: en

Publisher: Springer

Release Date: 2014-06-28


DOWNLOAD





This book constitutes the proceedings of the 5th International Conference on Interactive Theorem Proving, ITP 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, in Vienna, Austria, in July 2014. The 35 papers presented in this volume were carefully reviewed and selected from 59 submissions. The topics range from theoretical foundations to implementation aspects and applications in program verification, security and formalization of mathematics.