The Transition To Chaos

Download The Transition To Chaos PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Transition To Chaos book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
The Transition to Chaos

Author: Linda Reichl
language: en
Publisher: Springer Science & Business Media
Release Date: 2004-05-13
Based on courses given at the universities of Texas in Austin, and California in San Diego, this book deals with the basic mechanisms that determine the dynamic evolution of classical and quantum systems. It presents, in as simple a manner as possible, the basic mechanisms that determine the dynamical evolution of both classical and quantum systems in sufficient generality to include quantum phenomena. The book begins with a discussion of Noether's theorem, integrability, KAM theory, and a definition of chaotic behavior; it continues with a detailed discussion of area-preserving maps, integrable quantum systems, spectral properties, path integrals, and periodically driven systems; and it concludes by showing how to apply the ideas to stochastic systems. The presentation is complete and self-contained; appendices provide much of the needed mathematical background, and there are extensive references to the current literature. Problems at the ends of chapters help students clarify their understanding. In this new edition, the presentation will be brought up to date throughout, and a new chapter on open quantum systems will be added.
The Transition to Chaos

Author: Linda Reichl
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-11-11
Based on courses given at the universities of Texas in Austin, and California in San Diego, this book deals with the basic mechanisms that determine the dynamic evolution of classical and quantum systems. It presents, in as simple a manner as possible, the basic mechanisms that determine the dynamical evolution of both classical and quantum systems in sufficient generality to include quantum phenomena. The book begins with a discussion of Noether's theorem, integrability, KAM theory, and a definition of chaotic behavior; it continues with a detailed discussion of area-preserving maps, integrable quantum systems, spectral properties, path integrals, and periodically driven systems; and it concludes by showing how to apply the ideas to stochastic systems. The presentation is complete and self-contained; appendices provide much of the needed mathematical background, and there are extensive references to the current literature. Problems at the ends of chapters help students clarify their understanding. In this new edition, the presentation will be brought up to date throughout, and a new chapter on open quantum systems will be added.
The Transition to Chaos

Author: Linda Reichl
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-04-17
resonances. Nonlinear resonances cause divergences in conventional perturbation expansions. This occurs because nonlinear resonances cause a topological change locally in the structure of the phase space and simple perturbation theory is not adequate to deal with such topological changes. In Sect. (2.3), we introduce the concept of integrability. A sys tem is integrable if it has as many global constants of the motion as degrees of freedom. The connection between global symmetries and global constants of motion was first proven for dynamical systems by Noether [Noether 1918]. We will give a simple derivation of Noether's theorem in Sect. (2.3). As we shall see in more detail in Chapter 5, are whole classes of systems which are now known to be inte there grable due to methods developed for soliton physics. In Sect. (2.3), we illustrate these methods for the simple three-body Toda lattice. It is usually impossible to tell if a system is integrable or not just by looking at the equations of motion. The Poincare surface of section provides a very useful numerical tool for testing for integrability and will be used throughout the remainder of this book. We will illustrate the use of the Poincare surface of section for classic model of Henon and Heiles [Henon and Heiles 1964].