The Structure Of Groups With A Quasiconvex Hierarchy

Download The Structure Of Groups With A Quasiconvex Hierarchy PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Structure Of Groups With A Quasiconvex Hierarchy book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
The Structure of Groups with a Quasiconvex Hierarchy

Author: Daniel T. Wise
language: en
Publisher: Princeton University Press
Release Date: 2021-05-04
"This monograph weaves together fundamentals of Mikhail Leonidovich Gromov's hyperbolic groups with the theory of cube complexes dual to spaces with walls. Many fundamental new ideas and methodologies are presented here for the first time: A cubical small-cancellation theory generalizing ideas from the 1960's, a version of "Dehn Filling" that works in the category of special cube complexes, and a variety of new results about right-angled Artin groups. The book culminates by providing an unexpected new theorem about the nature of hyperbolic groups that are constructible as amalgams. Among the stunning applications, are the virtual fibering of cusped hyperbolic 3-manifolds and the resolution of R.J. Baumslag's conjecture on the residual finiteness of one-relator groups with torsion. Most importantly, the book outlines the author's program towards the resolution of the most important remaining conjectures of William Thurston, and achieves substantial progress in this direction. This monograph, which is richly illustrated with over 100 drawings, will be of interest to graduate students and scholars working in geometry, algebra, and topology. This groundbreaking monograph, intended for the Annals of Math series, lays the mathematical groundwork for the solution of the Thurston-Haken Conjecture, a significant result in geometric group theory. It outlines one of the deepest and most surprising pieces of this result, which also has a variety of other implications for geometric group theory. This work also has applications to low-dimensional topology, and the results in this book have since been used by other mathematicians to provide other important results"--
The Structure of Groups with a Quasiconvex Hierarchy

Author: Daniel T. Wise
language: en
Publisher: Princeton University Press
Release Date: 2021-05-04
This monograph on the applications of cube complexes constitutes a breakthrough in the fields of geometric group theory and 3-manifold topology. Many fundamental new ideas and methodologies are presented here for the first time, including a cubical small-cancellation theory that generalizes ideas from the 1960s, a version of Dehn Filling that functions in the category of special cube complexes, and a variety of results about right-angled Artin groups. The book culminates by establishing a remarkable theorem about the nature of hyperbolic groups that are constructible as amalgams. The applications described here include the virtual fibering of cusped hyperbolic 3-manifolds and the resolution of Baumslag's conjecture on the residual finiteness of one-relator groups with torsion. Most importantly, this work establishes a cubical program for resolving Thurston's conjectures on hyperbolic 3-manifolds, and validates this program in significant cases. Illustrated with more than 150 color figures, this book will interest graduate students and researchers working in geometry, algebra, and topology.
Structure and Regularity of Group Actions on One-Manifolds

This book presents the theory of optimal and critical regularities of groups of diffeomorphisms, from the classical work of Denjoy and Herman, up through recent advances. Beginning with an investigation of regularity phenomena for single diffeomorphisms, the book goes on to describes a circle of ideas surrounding Filipkiewicz's Theorem, which recovers the smooth structure of a manifold from its full diffeomorphism group. Topics covered include the simplicity of homeomorphism groups, differentiability of continuous Lie group actions, smooth conjugation of diffeomorphism groups, and the reconstruction of spaces from group actions. Various classical and modern tools are developed for controlling the dynamics of general finitely generated group actions on one-dimensional manifolds, subject to regularity bounds, including material on Thompson's group F, nilpotent groups, right-angled Artin groups, chain groups, finitely generated groups with prescribed critical regularities, and applications to foliation theory and the study of mapping class groups. The book will be of interest to researchers in geometric group theory.