The Structure And Interpretation Of Quantum Mechanics

Download The Structure And Interpretation Of Quantum Mechanics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Structure And Interpretation Of Quantum Mechanics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
The Structure and Interpretation of Quantum Mechanics

Author: R. I. G. Hughes
language: en
Publisher: Harvard University Press
Release Date: 1989
R. I. G. Hughes offers the first detailed and accessible analysis of the Hilbert-space models used in quantum theory and explains why they are so successful. He goes on to show how the very suitability of Hilbert spaces for modeling the quantum world gives rise to deep problems of interpretation, and makes suggestions about how they can be overcome.
Foundations and Interpretation of Quantum Mechanics

The aim of this book is twofold: to provide a comprehensive account of the foundations of the theory and to outline a theoretical and philosophical interpretation suggested from the results of the last twenty years.There is a need to provide an account of the foundations of the theory because recent experience has largely confirmed the theory and offered a wealth of new discoveries and possibilities. On the other side, the following results have generated a new basis for discussing the problem of the interpretation: the new developments in measurement theory; the experimental generation of ?Schrdinger cats?; recent developments which allow, for the first time, the simultaneous measurement of complementary observables; quantum information processing, teleportation and computation.To accomplish this task, the book combines historical, systematic and thematic approaches.
Probing the Structure of Quantum Mechanics

During the last decade, scientists working in quantum theory have been engaging in promising new fields such as quantum computation and quantum information processing, and have also been reflecting on the possibilities of nonlinear behavior on the quantum level. These are challenging undertakings because (1) they will result in new solutions to important technical and practical problems that were unsolvable by the classical approaches (for example, quantum computers can calculate problems that are intractable if one uses classical computers); and (2) they open up new 'hard' problems of a fundamental nature that touch the foundation of quantum theory itself (for example, the contradiction between locality and nonlinearity and the interpretation of quantum computing as a universal process).In this book, one can distinguish two main streams of research to approach the just-mentioned problem field: (1) a theoretical structural part, which concentrates on the elaboration of a nonlinear quantum mechanics and the fundamentals of quantum computation; and (2) a theoretical experimental part, which focuses on the theoretical aspects of applications that arise from new technology and novel research perspectives such as quantum optics and quantum cryptography. Particular attention is also paid to the measurement problem, the classical limit and alternative interpretations (such as the hidden measurement approach).