The Statistical Theory Of Shape


Download The Statistical Theory Of Shape PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Statistical Theory Of Shape book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

The Statistical Theory of Shape


The Statistical Theory of Shape

Author: Christopher G. Small

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





In general terms, the shape of an object, data set, or image can be de fined as the total of all information that is invariant under translations, rotations, and isotropic rescalings. Thus two objects can be said to have the same shape if they are similar in the sense of Euclidean geometry. For example, all equilateral triangles have the same shape, and so do all cubes. In applications, bodies rarely have exactly the same shape within measure ment error. In such cases the variation in shape can often be the subject of statistical analysis. The last decade has seen a considerable growth in interest in the statis tical theory of shape. This has been the result of a synthesis of a number of different areas and a recognition that there is considerable common ground among these areas in their study of shape variation. Despite this synthesis of disciplines, there are several different schools of statistical shape analysis. One of these, the Kendall school of shape analysis, uses a variety of mathe matical tools from differential geometry and probability, and is the subject of this book. The book does not assume a particularly strong background by the reader in these subjects, and so a brief introduction is provided to each of these topics. Anyone who is unfamiliar with this material is advised to consult a more complete reference. As the literature on these subjects is vast, the introductory sections can be used as a brief guide to the literature.

Shape and Shape Theory


Shape and Shape Theory

Author: D. G. Kendall

language: en

Publisher: John Wiley & Sons

Release Date: 2009-09-25


DOWNLOAD





Shape and Shape Theory D. G. Kendall Churchill College, University of Cambridge, UK D. Barden Girton College, University of Cambridge, UK T. K. Carne King's College, University of Cambridge, UK H. Le University of Nottingham, UK The statistical theory of shape is a relatively new topic and is generating a great deal of interest and comment by statisticians, engineers and computer scientists. Mathematically, 'shape' is the geometrical information required to describe an object when location, scale and rotational effects are removed. The theory was pioneered by Professor David Kendall to solve practical problems concerning shape. This text presents an elegant account of the theory of shape that has evolved from Kendall's work. Features include: * A comprehensive account of Kendall's shape spaces * A variety of topological and geometric invariants of these spaces * Emphasis on the mathematical aspects of shape analysis * Coverage of the mathematical issues for a wide range of applications The early chapters provide all the necessary background information, including the history and applications of shape theory. The authors then go on to analyse the topic, in brilliant detail, in a variety of different shape spaces. Kendall's own procedures for visualising distributions of shapes and shape processes are covered at length. Implications from other branches of mathematics are explored, along with more advanced applications, incorporating statistics and stochastic analysis. Applied statisticians, applied mathematicians, engineers and computer scientists working and researching in the fields of archaeology, astronomy, biology, geography and physical chemistry will find this book of great benefit. The theories presented are used today in a wide range of subjects from archaeology through to physics, and will provide fascinating reading to anyone engaged in such research. Visit our web page! http://www.wiley.com/

Statistical Shape Analysis


Statistical Shape Analysis

Author: Ian L. Dryden

language: en

Publisher: John Wiley & Sons

Release Date: 2016-07-08


DOWNLOAD





A thoroughly revised and updated edition of this introduction to modern statistical methods for shape analysis Shape analysis is an important tool in the many disciplines where objects are compared using geometrical features. Examples include comparing brain shape in schizophrenia; investigating protein molecules in bioinformatics; and describing growth of organisms in biology. This book is a significant update of the highly-regarded Statistical Shape Analysis by the same authors. The new edition lays the foundations of landmark shape analysis, including geometrical concepts and statistical techniques, and extends to include analysis of curves, surfaces, images and other types of object data. Key definitions and concepts are discussed throughout, and the relative merits of different approaches are presented. The authors have included substantial new material on recent statistical developments and offer numerous examples throughout the text. Concepts are introduced in an accessible manner, while retaining sufficient detail for more specialist statisticians to appreciate the challenges and opportunities of this new field. Computer code has been included for instructional use, along with exercises to enable readers to implement the applications themselves in R and to follow the key ideas by hands-on analysis. Offers a detailed yet accessible treatment of statistical methods for shape analysis Includes numerous examples and applications from many disciplines Provides R code for implementing the examples Covers a wide variety of recent developments in shape analysis Shape Analysis, with Applications in R will offer a valuable introduction to this fast-moving research area for statisticians and other applied scientists working in diverse areas, including archaeology, bioinformatics, biology, chemistry, computer science, medicine, morphometics and image analysis.