The Self Organizing Brain From Growth Cones To Functional Networks

Download The Self Organizing Brain From Growth Cones To Functional Networks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Self Organizing Brain From Growth Cones To Functional Networks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
The Self-Organizing Brain: From Growth Cones to Functional Networks

This book concentrates on the organizational level of neurons and neuronal networks under the unifying theme "The Self-Organizing Brain - From Growth Cones to Functional Networks". Such a theme is attractive because it incorporates all phases in the emergence of complexity and (adaptive) organization, as well as involving processes that remain operative in the mature state. The order of the sections follows successive levels of organization from neuronal growth cones, neurite formation, neuronal morphology and signal processing to network development, network dynamics and, finally, to the formation of functional circuits.
Modeling Biology

Experts examine new modeling strategies for the interpretation of biological data and their integration into the conceptual framework of theoretical biology, detailing approaches that focus on morphology, development, behavior, or evolution. Abstract and conceptual models have become an indispensable tool for analyzing the flood of highly detailed empirical data generated in recent years by advanced techniques in the biosciences. Scientists are developing new modeling strategies for analyzing data, integrating results into the conceptual framework of theoretical biology, and formulating new hypotheses. In Modeling Biology, leading scholars investigate new modeling strategies in the domains of morphology, development, behavior, and evolution. The emphasis on models in the biological sciences has been accompanied by a new focus on conceptual issues and a more complex understanding of epistemological concepts. Contributors to Modeling Biology discuss models and modeling strategies from the perspectives of philosophy, history, and applied mathematics. Individual chapters discuss specific approaches to modeling in such domains as biological form, development, and behavior. Finally, the book addresses the modeling of these properties in the context of evolution, with a particular emphasis on the emerging field of evolutionary developmental biology (or evo-devo). Contributors Giorgio A. Ascoli, Chandrajit Bajaj, James P. Collins, Luciano da Fontoura Costa, Kerstin Dautenhahn, Nigel R. Franks, Scott Gilbert, Marta Ibañes Miguez, Juan Carlos Izpisúa-Belmonte, Alexander S. Klyubin, Thomas J. Koehnle, Manfred D. Laubichler, Sabina Leonelli, James A. R. Marshall, George R. McGhee Jr., Gerd B. Müller, Chrystopher L. Nehaniv, Karl J. Niklas, Lars Olsson, Eirikur Palsson, Daniel Polani, Diego Rasskin Gutman, Hans-Jörg Rheinberger, Alexei V. Samsonovich, Jeffrey C. Schank, Harry B. M. Uylings, Jaap van Pelt, Iain Werry