The Role Of Mathematics In Physical Sciences

Download The Role Of Mathematics In Physical Sciences PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Role Of Mathematics In Physical Sciences book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Mathematics and the Natural Sciences

The book aims at the identification of the organising concepts of some physical and biological phenomena, by means of an analysis of the foundations of mathematics and of physics. This is done in the perspective of unifying phenomena, of bringing different conceptual universes into dialog. The analysis of the role of “order” and of symmetries in the foundations of mathematics is linked to the main invariants and principles, among which the geodesic principle (a consequence of symmetries), which govern and confer unity to the various physical theories. Moreover, we attempt to understand causal structures, a central element of physical intelligibility, in terms of symmetries and their breakings. The importance of the mathematical tool is also highlighted, enabling us to grasp the differences in the models for physics and biology which are proposed by continuous and discrete mathematics, such as computational simulations. A distinction between principles of (conceptual) construction and principles of proofs, both in physics and in mathematics, guides this part of the work.As for biology, being particularly difficult and not as thoroughly examined at a theoretical level, we propose a “unification by concepts”, an attempt which should always precede mathematisation. This constitutes an outline for unification also basing itself upon the highlighting of conceptual differences, of complex points of passage, of technical irreducibilities of one field to another. Indeed, a monist point of view such as ours should not make us blind: we, the living objects, are surely just big bags of molecules or, at least, this is our main metaphysical assumption. The point though is: which theory can help us to better understand these bags of molecules, as they are, indeed, rather “singular”, from the physical point of view. Technically, this singularity is expressed by the notion of “extended criticality”, a notion that logically extends the pointwise critical transitions in physics.
Mathematics in Physics Education

This book is about mathematics in physics education, the difficulties students have in learning physics, and the way in which mathematization can help to improve physics teaching and learning. The book brings together different teaching and learning perspectives, and addresses both fundamental considerations and practical aspects. Divided into four parts, the book starts out with theoretical viewpoints that enlighten the interplay of physics and mathematics also including historical developments. The second part delves into the learners' perspective. It addresses aspects of the learning by secondary school students as well as by students just entering university, or teacher students. Topics discussed range from problem solving over the role of graphs to integrated mathematics and physics learning. The third part includes a broad range of subjects from teachers' views and knowledge, the analysis of classroom discourse and an evaluated teaching proposal. The last part describes approaches that take up mathematization in a broader interpretation, and includes the presentation of a model for physics teachers' pedagogical content knowledge (PCK) specific to the role of mathematics in physics.
Student Solution Manual for Foundation Mathematics for the Physical Sciences

Author: K. F. Riley
language: en
Publisher: Cambridge University Press
Release Date: 2011-03-28
This Student Solution Manual provides complete solutions to all the odd-numbered problems in Foundation Mathematics for the Physical Sciences. It takes students through each problem step-by-step, so they can clearly see how the solution is reached, and understand any mistakes in their own working. Students will learn by example how to arrive at the correct answer and improve their problem-solving skills.