The Representation Theory Of Finite Semigroups

Download The Representation Theory Of Finite Semigroups PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Representation Theory Of Finite Semigroups book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Representation Theory of Finite Monoids

This first text on the subject provides a comprehensive introduction to the representation theory of finite monoids. Carefully worked examples and exercises provide the bells and whistles for graduate accessibility, bringing a broad range of advanced readers to the forefront of research in the area. Highlights of the text include applications to probability theory, symbolic dynamics, and automata theory. Comfort with module theory, a familiarity with ordinary group representation theory, and the basics of Wedderburn theory, are prerequisites for advanced graduate level study. Researchers in algebra, algebraic combinatorics, automata theory, and probability theory, will find this text enriching with its thorough presentation of applications of the theory to these fields. Prior knowledge of semigroup theory is not expected for the diverse readership that may benefit from this exposition. The approach taken in this book is highly module-theoretic and follows the modern flavor of the theory of finite dimensional algebras. The content is divided into 7 parts. Part I consists of 3 preliminary chapters with no prior knowledge beyond group theory assumed. Part II forms the core of the material giving a modern module-theoretic treatment of the Clifford –Munn–Ponizovskii theory of irreducible representations. Part III concerns character theory and the character table of a monoid. Part IV is devoted to the representation theory of inverse monoids and categories and Part V presents the theory of the Rhodes radical with applications to triangularizability. Part VI features 3 chapters devoted to applications to diverse areas of mathematics and forms a high point of the text. The last part, Part VII, is concerned with advanced topics. There are also 3 appendices reviewing finite dimensional algebras, group representation theory, and Möbius inversion.
Representation Theory of Finite Groups

Author: Benjamin Steinberg
language: en
Publisher: Springer Science & Business Media
Release Date: 2011-10-23
This book is intended to present group representation theory at a level accessible to mature undergraduate students and beginning graduate students. This is achieved by mainly keeping the required background to the level of undergraduate linear algebra, group theory and very basic ring theory. Module theory and Wedderburn theory, as well as tensor products, are deliberately avoided. Instead, we take an approach based on discrete Fourier Analysis. Applications to the spectral theory of graphs are given to help the student appreciate the usefulness of the subject. A number of exercises are included. This book is intended for a 3rd/4th undergraduate course or an introductory graduate course on group representation theory. However, it can also be used as a reference for workers in all areas of mathematics and statistics.
The q-theory of Finite Semigroups

Author: John Rhodes
language: en
Publisher: Springer Science & Business Media
Release Date: 2009-04-05
Discoveries in finite semigroups have influenced several mathematical fields, including theoretical computer science, tropical algebra via matrix theory with coefficients in semirings, and other areas of modern algebra. This comprehensive, encyclopedic text will provide the reader - from the graduate student to the researcher/practitioner – with a detailed understanding of modern finite semigroup theory, focusing in particular on advanced topics on the cutting edge of research. Key features: (1) Develops q-theory, a new theory that provides a unifying approach to finite semigroup theory via quantization; (2) Contains the only contemporary exposition of the complete theory of the complexity of finite semigroups; (3) Introduces spectral theory into finite semigroup theory; (4) Develops the theory of profinite semigroups from first principles, making connections with spectra of Boolean algebras of regular languages; (5) Presents over 70 research problems, most new, and hundreds of exercises. Additional features: (1) For newcomers, an appendix on elementary finite semigroup theory; (2) Extensive bibliography and index. The q-theory of Finite Semigroups presents important techniques and results, many for the first time in book form, and thereby updates and modernizes the literature of semigroup theory.