The Real Positive Definite Completion Problem

Download The Real Positive Definite Completion Problem PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Real Positive Definite Completion Problem book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
The Real Positive Definite Completion Problem: Cycle Completability

Author: Wayne Walton Barrett
language: en
Publisher: American Mathematical Soc.
Release Date: 1996
Given a partial symmetric matrix, the positive definite completion problem asks if the unspecified entries in the matrix can be chosen so as to make the resulting matrix positive definite. Applications include probability and statistics, image enhancement, systems engineering, geophysics, and mathematical programming. The positive definite completion problem can also be viewed as a mechanism for addressing a fundamental problem in Euclidean geometry: which potential geometric configurations of vectors (i.e., configurations with angles between some vectors specified) are realizable in a Euclidean space. The positions of the specified entries in a partial matrix are naturally described by a graph. The question of existence of a positive definite completion was previously solved completely for the restrictive class of chordal graphs and this work solves the problem for the class of cycle completable graphs, a significant generalization of chordal graphs. These are graphs for which knowledge of completability for induced cycles (and cliques) implies completability of partial symmetric matrices with the given graph.
Completion Problems on Operator Matrices

Author: Dragana S. Cvetković Ilić
language: en
Publisher: American Mathematical Society
Release Date: 2022-06-07
Completion problems for operator matrices are concerned with the question of whether a partially specified operator matrix can be completed to form an operator of a desired type. The research devoted to this topic provides an excellent means to investigate the structure of operators. This book provides an overview of completion problems dealing with completions to different types of operators and can be considered as a natural extension of classical results concerned with matrix completions. The book assumes some basic familiarity with functional analysis and operator theory. It will be useful for graduate students and researchers interested in operator theory and the problem of matrix completions.
Topics in Semidefinite and Interior-Point Methods

Author: Panos M. Pardalos
language: en
Publisher: American Mathematical Soc.
Release Date: 1998
This volume presents refereed papers presented at the workshop Semidefinite Programming and Interior-Point Approaches for Combinatorial Problems: held at The Fields Institute in May 1996. Semidefinite programming (SDP) is a generalization of linear programming (LP) in that the non-negativity constraints on the variables is replaced by a positive semidefinite constraint on matrix variables. Many of the elegant theoretical properties and powerful solution techniques follow through from LP to SDP. In particular, the primal-dual interior-point methods, which are currently so successful for LP, can be used to efficiently solve SDP problems. In addition to the theoretical and algorithmic questions, SDP has found many important applications in combinatorial optimization, control theory and other areas of mathematical programming. The papers in this volume cover a wide spectrum of recent developments in SDP. The volume would be suitable as a textbook for advanced courses in optimization. It is intended for graduate students and researchers in mathematics, computer science, engineering and operations.