The Physics Of Time Reversal

Download The Physics Of Time Reversal PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Physics Of Time Reversal book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
The Physics of Time Reversal

Author: Robert G. Sachs
language: en
Publisher: University of Chicago Press
Release Date: 1987
The notion that fundamental equations governing the motions of physical systems are invariant under the time reversal transformation (T) has been an important, but often subliminal, element in the development of theoretical physics. It serves as a powerful and useful tool in analyzing the structure of matter at all scales, from gases and condensed matter to subnuclear physics and the quantum theory of fields. The assumption of invariance under T was called into question, however, by the 1964 discovery that a closely related assumption, that of CP invariance (where C is charge conjugation and P is space inversion), is violated in the decay of neutral K mesons. In The Physics of Time Reversal, Robert G. Sachs comprehensively treats the role of the transformation T, both as a tool for analyzing the structure of matter and as a field of fundamental research relating to CP violation. For this purpose he reformulates the definitions of T, P, and C so as to avoid subliminal assumptions of invariance. He summarizes the standard phenomenology of CP violation in the K-meson system and addresses the question of the mysterious origin of CP violation. Using simple examples based on the standard quark model, Sachs summarizes and illustrates how these phenomenological methods can be extended to analysis of future experiments on heavy mesons. He notes that his reformulated approach to conventional quantum field theory leads to new questions about the meaning of the transformations in the context of recent theoretical developments such as non-Abelian gauge theories, and he suggests ways in which these questions may lead to new directions of research.
Time-Reversal Symmetry

This book introduces new developments in the field of Time-Reversal Symmetry presenting, for the first time, the Wigner time-reversal operator in the form of a product of two- or three time-reversal operators of lower symmetry. The action of these operators leads to the sign change of only one or two angular momentum components, not of all of them. It demonstrates that there are six modes of time-reversal symmetry breaking that do not lead to the complete disappearance of the symmetry but to its lowering. The full restoration of the time-reversal symmetry in the six cases mentioned is possible by introducing six types of metaparticles. The book also confirms the presence of six additional time-reversal operators using a group-theoretical method. The problem is only where to seek these metaparticles. The book discusses time-reversal symmetry in classical mechanics, classical and relativistic electrodynamics, quantum mechanics and theory of quantized fields, including dynamical reversibility and statistical irreversibility of the time, Wigner’s and Herring’s criteria, Kramers theorem, selection rules due to time-reversal symmetry, Onsager’s relations, Poincaré recurrence theorem, and CPT theorem. It particularly focuses attention on time-reversal symmetry violation. It is proposed a new method of testing the time-reversal symmetry, which is confirmed experimentally by EPR spectroscopy data. It shows that the traditional black-white point groups of magnetic symmetry are not applicable to magnetic systems with Kramers degeneration of energy levels and that magnetic groups of four-color symmetry are adequate for them. Further, it addresses the predicted structural distortions in Kramers three-homonuclear magnetic clusters due to time-reversal symmetry that have been identified experimentally. Lastly, it proposes a method of synthesis of two-nuclear coordination compounds with predictable magnetic properties, based on the application of the time-reversal transformation that was confirmed experimentally.
Time and Chance

Author: David Z Albert
language: en
Publisher: Harvard University Press
Release Date: 2003-02-28
This book is an attempt to get to the bottom of an acute and perennial tension between our best scientific pictures of the fundamental physical structure of the world and our everyday empirical experience of it. The trouble is about the direction of time. The situation (very briefly) is that it is a consequence of almost every one of those fundamental scientific pictures--and that it is at the same time radically at odds with our common sense--that whatever can happen can just as naturally happen backwards. Albert provides an unprecedentedly clear, lively, and systematic new account--in the context of a Newtonian-Mechanical picture of the world--of the ultimate origins of the statistical regularities we see around us, of the temporal irreversibility of the Second Law of Thermodynamics, of the asymmetries in our epistemic access to the past and the future, and of our conviction that by acting now we can affect the future but not the past. Then, in the final section of the book, he generalizes the Newtonian picture to the quantum-mechanical case and (most interestingly) suggests a very deep potential connection between the problem of the direction of time and the quantum-mechanical measurement problem. The book aims to be both an original contribution to the present scientific and philosophical understanding of these matters at the most advanced level, and something in the nature of an elementary textbook on the subject accessible to interested high-school students.