The Physics And Modeling Of Latch Up And Cmos Integrated Circuits

Download The Physics And Modeling Of Latch Up And Cmos Integrated Circuits PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Physics And Modeling Of Latch Up And Cmos Integrated Circuits book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Latchup

Author: Steven H. Voldman
language: en
Publisher: John Wiley & Sons
Release Date: 2008-04-15
Interest in latchup is being renewed with the evolution of complimentary metal-oxide semiconductor (CMOS) technology, metal-oxide-semiconductor field-effect transistor (MOSFET) scaling, and high-level system-on-chip (SOC) integration. Clear methodologies that grant protection from latchup, with insight into the physics, technology and circuit issues involved, are in increasing demand. This book describes CMOS and BiCMOS semiconductor technology and their sensitivity to present day latchup phenomena, from basic over-voltage and over-current conditions, single event latchup (SEL) and cable discharge events (CDE), to latchup domino phenomena. It contains chapters focusing on bipolar physics, latchup theory, latchup and guard ring characterization structures, characterization testing, product level test systems, product level testing and experimental results. Discussions on state-of-the-art semiconductor processes, design layout, and circuit level and system level latchup solutions are also included, as well as: latchup semiconductor process solutions for both CMOS to BiCMOS, such as shallow trench, deep trench, retrograde wells, connecting implants, sub-collectors, heavily-doped buried layers, and buried grids – from single- to triple-well CMOS; practical latchup design methods, automated and bench-level latchup testing methods and techniques, latchup theory of logarithm resistance space, generalized alpha (a) space, beta (b) space, new latchup design methods– connecting the theoretical to the practical analysis, and; examples of latchup computer aided design (CAD) methodologies, from design rule checking (DRC) and logical-to-physical design, to new latchup CAD methodologies that address latchup for internal and external latchup on a local as well as global design level. Latchup acts as a companion text to the author’s series of books on ESD (electrostatic discharge) protection, serving as an invaluable reference for the professional semiconductor chip and system-level ESD engineer. Semiconductor device, process and circuit designers, and quality, reliability and failure analysis engineers will find it informative on the issues that confront modern CMOS technology. Practitioners in the automotive and aerospace industries will also find it useful. In addition, its academic treatment will appeal to both senior and graduate students with interests in semiconductor process, device physics, computer aided design and design integration.
Latchup in CMOS Technology

Author: R.R. Troutman
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-03-14
Why a book on Iatchup? Latchup has been, and continues to be, a potentially serious CMOS reliability concern. This concern is becoming more widespread with the ascendency of CMOS as the dominant VLSI technology, particularly as parasitic bipolar characteristics continue to improve at ever smaller dimensions on silicon wafers with ever lower defect densities. Although many successful parts have been marketed, latchup solutions have often been ad hoc. Although latchup avoidance techniques have been previously itemized, there has been little quantitative evaluation of prior latchup fixes. What is needed is a more general, more systematic treatment of the latchup problem. Because of the wide variety of CMOS technologies and the long term interest in latchup, some overall guiding principles are needed. Appreciating the variety of possible triggering mechanisms is key to a real understanding of latchup. This work reviews the origin of each and its effect on the parasitic structure. Each triggering mechanism is classified according to a new taxonomy.