The Numerical Solution Of Ordinary And Partial Differential Equations


Download The Numerical Solution Of Ordinary And Partial Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Numerical Solution Of Ordinary And Partial Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

The Numerical Solution of Ordinary and Partial Differential Equations


The Numerical Solution of Ordinary and Partial Differential Equations

Author: Granville Sewell

language: en

Publisher: Academic Press

Release Date: 2014-05-10


DOWNLOAD





The Numerical Solution of Ordinary and Partial Differential Equations is an introduction to the numerical solution of ordinary and partial differential equations. Finite difference methods for solving partial differential equations are mostly classical low order formulas, easy to program but not ideal for problems with poorly behaved solutions or (especially) for problems in irregular multidimensional regions. FORTRAN77 programs are used to implement many of the methods studied. Comprised of six chapters, this book begins with a review of direct methods for the solution of linear systems, with emphasis on the special features of the linear systems that arise when differential equations are solved. The next four chapters deal with the more commonly used finite difference methods for solving a variety of problems, including both ordinary differential equations and partial differential equations, and both initial value and boundary value problems. The final chapter is an overview of the basic ideas behind the finite element method and covers the Galerkin method for boundary value problems. Examples using piecewise linear trial functions, cubic hermite trial functions, and triangular elements are presented. This monograph is appropriate for senior-level undergraduate or first-year graduate students of mathematics.

Numerical Solution Of Ordinary And Partial Differential Equations, The (3rd Edition)


Numerical Solution Of Ordinary And Partial Differential Equations, The (3rd Edition)

Author: Granville Sewell

language: en

Publisher: World Scientific

Release Date: 2014-12-16


DOWNLOAD





This book presents methods for the computational solution of differential equations, both ordinary and partial, time-dependent and steady-state. Finite difference methods are introduced and analyzed in the first four chapters, and finite element methods are studied in chapter five. A very general-purpose and widely-used finite element program, PDE2D, which implements many of the methods studied in the earlier chapters, is presented and documented in Appendix A.The book contains the relevant theory and error analysis for most of the methods studied, but also emphasizes the practical aspects involved in implementing the methods. Students using this book will actually see and write programs (FORTRAN or MATLAB) for solving ordinary and partial differential equations, using both finite differences and finite elements. In addition, they will be able to solve very difficult partial differential equations using the software PDE2D, presented in Appendix A. PDE2D solves very general steady-state, time-dependent and eigenvalue PDE systems, in 1D intervals, general 2D regions, and a wide range of simple 3D regions.The Windows version of PDE2D comes free with every purchase of this book. More information at www.pde2d.com/contact.

Analytic Methods for Partial Differential Equations


Analytic Methods for Partial Differential Equations

Author: G. Evans

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





The subject of partial differential equations holds an exciting and special position in mathematics. Partial differential equations were not consciously created as a subject but emerged in the 18th century as ordinary differential equations failed to describe the physical principles being studied. The subject was originally developed by the major names of mathematics, in particular, Leonard Euler and Joseph-Louis Lagrange who studied waves on strings; Daniel Bernoulli and Euler who considered potential theory, with later developments by Adrien-Marie Legendre and Pierre-Simon Laplace; and Joseph Fourier's famous work on series expansions for the heat equation. Many of the greatest advances in modern science have been based on discovering the underlying partial differential equation for the process in question. J ames Clerk Maxwell, for example, put electricity and magnetism into a unified theory by estab lishing Maxwell's equations for electromagnetic theory, which gave solutions for problems in radio wave propagation, the diffraction of light and X-ray developments. Schrodinger's equation for quantum mechankal processes at the atomic level leads to experimentally verifiable results which have changed the face of atomic physics and chemistry in the 20th century. In fluid mechanics, the Navier-Stokes' equations form a basis for huge number-crunching activities associated with such widely disparate topics as weather forcasting and the design of supersonic aircraft. Inevitably the study of partial differential equations is a large undertaking, and falls into several areas of mathematics.