The Meaning Of Unity In Energy Conversion Systems


Download The Meaning Of Unity In Energy Conversion Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Meaning Of Unity In Energy Conversion Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

The Meaning of Unity in Energy Conversion Systems


The Meaning of Unity in Energy Conversion Systems

Author: James F Murray III

language: en

Publisher:

Release Date: 2020-01-13


DOWNLOAD





Initially, it had been assumed that a simple ratio computed by dividing the output power by the input power would provide a reliable yardstick for motor power efficiency. The basic idea was sound, for the closer the quotient came to unity, the nearer the motor efficiency would be to 100%. Hence began the so-called "Quest for Unity." However, early "electric engines" were very inefficient, probably delivering no more than 30% of the electrical input power to the output shaft. Therefore, it quickly became evident that not all the applied power was being converted to a mechanical output. Clearly, inefficiencies were involved, and they would have to be accounted for. Until this was complete, the simplified approach to establishing a Factor of Unity could not be realized. What is remarkable, in the history of motor development, is the curious degree of synergy that seems to have accompanied these early pioneering efforts. Between 1839 and 1850 the British Brew Master James Joule conducted an elegant series of experiments, in which he sought to unify electrical, chemical and thermal phenomena by demonstrating their inter-convertibility and their quantitative equivalence. The results of Joule's work were published in the Philosophical Transactions of the Royal Society, with a very impressive title: "On the Mechanical Equivalence of Heat." The contributions of Lord Kelvin must be considered next. His paper, "The Dynamical Equivalent of Heat," published in 1851, contended that energy could be "lost to man irrecoverably; but not lost to the material world". Thomson was thus the first person to understand that all energy changes involve energy dissipation, and losses. During the second half of the nineteenth century Kelvin and other scientists, including Clausius, Rankine, Maxwell and, Boltzmann, continued to develop these ideas. Their combined efforts resulted in the establishment of the Science of Thermodynamics; with Conservation of Energy as its First Law and the Dissipation of Energy as its Second Law. Accordingly, motor researchers were thus made aware of the extreme importance of classifying all known motor losses, and accounting for them with the same degree of accuracy as would be exhibited in the well-established science of corporate book-keeping. Ultimately, such practices would lead to the development of two principle kinds of Efficiency Measurements, both very valuable in all research pertaining to rotating components, but, particularly valuable for developing an understanding of over-unity as a scientific fact. Both efficiency concepts shall be fully explained in this presentation. Simply, this book serves as a definitive guide for those who wish to properly validate their input vs output claims.INCLUDES copies of one of the most significant and important patents in history and a related patent on Jim Murray's Dynaflux Alternator for convenience as it is used as an example in the calculations.

Energy Conversion Engineering


Energy Conversion Engineering

Author: Ahmed F. Ghoniem

language: en

Publisher: Cambridge University Press

Release Date: 2021-11-11


DOWNLOAD





Discover the fundamentals and tools needed to model, design, and build efficient, clean low-carbon energy systems with this unique textbook.

Modeling Power Electronics and Interfacing Energy Conversion Systems


Modeling Power Electronics and Interfacing Energy Conversion Systems

Author: M. Godoy Simoes

language: en

Publisher: John Wiley & Sons

Release Date: 2016-10-24


DOWNLOAD





Discusses the application of mathematical and engineering tools for modeling, simulation and control oriented for energy systems, power electronics and renewable energy This book builds on the background knowledge of electrical circuits, control of dc/dc converters and inverters, energy conversion and power electronics. The book shows readers how to apply computational methods for multi-domain simulation of energy systems and power electronics engineering problems. Each chapter has a brief introduction on the theoretical background, a description of the problems to be solved, and objectives to be achieved. Block diagrams, electrical circuits, mathematical analysis or computer code are covered. Each chapter concludes with discussions on what should be learned, suggestions for further studies and even some experimental work. Discusses the mathematical formulation of system equations for energy systems and power electronics aiming state-space and circuit oriented simulations Studies the interactions between MATLAB and Simulink models and functions with real-world implementation using microprocessors and microcontrollers Presents numerical integration techniques, transfer-function modeling, harmonic analysis and power quality performance assessment Examines existing software such as, MATLAB/Simulink, Power Systems Toolbox and PSIM to simulate power electronic circuits including the use of renewable energy sources such as wind and solar sources The simulation files are available for readers who register with the Google Group: power-electronics-interfacing-energy-conversion-systems@googlegroups.com. After your registration you will receive information in how to access the simulation files, the Google Group can also be used to communicate with other registered readers of this book.