The Mathematics Of Encryption

Download The Mathematics Of Encryption PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Mathematics Of Encryption book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
The Mathematics of Encryption

Author: Margaret Cozzens
language: en
Publisher: American Mathematical Soc.
Release Date: 2013-09-05
How quickly can you compute the remainder when dividing by 120143? Why would you even want to compute this? And what does this have to do with cryptography? Modern cryptography lies at the intersection of mathematics and computer sciences, involving number theory, algebra, computational complexity, fast algorithms, and even quantum mechanics. Many people think of codes in terms of spies, but in the information age, highly mathematical codes are used every day by almost everyone, whether at the bank ATM, at the grocery checkout, or at the keyboard when you access your email or purchase products online. This book provides a historical and mathematical tour of cryptography, from classical ciphers to quantum cryptography. The authors introduce just enough mathematics to explore modern encryption methods, with nothing more than basic algebra and some elementary number theory being necessary. Complete expositions are given of the classical ciphers and the attacks on them, along with a detailed description of the famous Enigma system. The public-key system RSA is described, including a complete mathematical proof that it works. Numerous related topics are covered, such as efficiencies of algorithms, detecting and correcting errors, primality testing and digital signatures. The topics and exposition are carefully chosen to highlight mathematical thinking and problem solving. Each chapter ends with a collection of problems, ranging from straightforward applications to more challenging problems that introduce advanced topics. Unlike many books in the field, this book is aimed at a general liberal arts student, but without losing mathematical completeness.
An Introduction to Mathematical Cryptography

Author: Jeffrey Hoffstein
language: en
Publisher: Springer Science & Business Media
Release Date: 2008-12-15
An Introduction to Mathematical Cryptography provides an introduction to public key cryptography and underlying mathematics that is required for the subject. Each of the eight chapters expands on a specific area of mathematical cryptography and provides an extensive list of exercises. It is a suitable text for advanced students in pure and applied mathematics and computer science, or the book may be used as a self-study. This book also provides a self-contained treatment of mathematical cryptography for the reader with limited mathematical background.
The Mathematics of Secrets

Author: Joshua Holden
language: en
Publisher: Princeton University Press
Release Date: 2018-10-02
Explaining the mathematics of cryptography The Mathematics of Secrets takes readers on a fascinating tour of the mathematics behind cryptography—the science of sending secret messages. Using a wide range of historical anecdotes and real-world examples, Joshua Holden shows how mathematical principles underpin the ways that different codes and ciphers work. He focuses on both code making and code breaking and discusses most of the ancient and modern ciphers that are currently known. He begins by looking at substitution ciphers, and then discusses how to introduce flexibility and additional notation. Holden goes on to explore polyalphabetic substitution ciphers, transposition ciphers, connections between ciphers and computer encryption, stream ciphers, public-key ciphers, and ciphers involving exponentiation. He concludes by looking at the future of ciphers and where cryptography might be headed. The Mathematics of Secrets reveals the mathematics working stealthily in the science of coded messages. A blog describing new developments and historical discoveries in cryptography related to the material in this book is accessible at http://press.princeton.edu/titles/10826.html.