The Lower Algebraic K Theory Of Virtually Cyclic Subgroups Of The Braid Groups Of The Sphere And Of Zb4 S2

Download The Lower Algebraic K Theory Of Virtually Cyclic Subgroups Of The Braid Groups Of The Sphere And Of Zb4 S2 PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Lower Algebraic K Theory Of Virtually Cyclic Subgroups Of The Braid Groups Of The Sphere And Of Zb4 S2 book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
The Lower Algebraic K-Theory of Virtually Cyclic Subgroups of the Braid Groups of the Sphere and of ZB4(S2)

This volume deals with the K-theoretical aspects of the group rings of braid groups of the 2-sphere. The lower algebraic K-theory of the finite subgroups of these groups up to eleven strings is computed using a wide variety of tools. Many of the techniques extend to the general case, and the results reveal new K-theoretical phenomena with respect to the previous study of other families of groups. The second part of the manuscript focusses on the case of the 4-string braid group of the 2-sphere, which is shown to be hyperbolic in the sense of Gromov. This permits the computation of the infinite maximal virtually cyclic subgroups of this group and their conjugacy classes, and applying the fact that this group satisfies the Fibred Isomorphism Conjecture of Farrell and Jones, leads to an explicit calculation of its lower K-theory. Researchers and graduate students working in K-theory and surface braid groups will constitute the primary audience of the manuscript, particularly those interested in the Fibred Isomorphism Conjecture, and the computation of Nil groups and the lower algebraic K-groups of group rings. The manuscript will also provide a useful resource to researchers who wish to learn the techniques needed to calculate lower algebraic K-groups, and the bibliography brings together a large number of references in this respect.
The Classification of the Virtually Cyclic Subgroups of the Sphere Braid Groups

Author: Daciberg Lima Goncalves
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-09-08
This manuscript is devoted to classifying the isomorphism classes of the virtually cyclic subgroups of the braid groups of the 2-sphere. As well as enabling us to understand better the global structure of these groups, it marks an important step in the computation of the K-theory of their group rings. The classification itself is somewhat intricate, due to the rich structure of the finite subgroups of these braid groups, and is achieved by an in-depth analysis of their group-theoretical and topological properties, such as their centralisers, normalisers and cohomological periodicity. Another important aspect of our work is the close relationship of the braid groups with mapping class groups. This manuscript will serve as a reference for the study of braid groups of low-genus surfaces, and isaddressed to graduate students and researchers in low-dimensional, geometric and algebraic topology and in algebra.
Algebraic K-theory of Crystallographic Groups

The Farrell-Jones isomorphism conjecture in algebraic K-theory offers a description of the algebraic K-theory of a group using a generalized homology theory. In cases where the conjecture is known to be a theorem, it gives a powerful method for computing the lower algebraic K-theory of a group. This book contains a computation of the lower algebraic K-theory of the split three-dimensional crystallographic groups, a geometrically important class of three-dimensional crystallographic group, representing a third of the total number. The book leads the reader through all aspects of the calculation. The first chapters describe the split crystallographic groups and their classifying spaces. Later chapters assemble the techniques that are needed to apply the isomorphism theorem. The result is a useful starting point for researchers who are interested in the computational side of the Farrell-Jones isomorphism conjecture, and a contribution to the growing literature in the field.