The Kaggle Workbook


Download The Kaggle Workbook PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Kaggle Workbook book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

The Kaggle Workbook


The Kaggle Workbook

Author: Konrad Banachewicz

language: en

Publisher: Packt Publishing Ltd

Release Date: 2023-02-24


DOWNLOAD





Move up the Kaggle leaderboards and supercharge your data science and machine learning career by analyzing famous competitions and working through exercises. Purchase of the print or Kindle book includes a free eBook in PDF format. Key Features Challenge yourself to start thinking like a Kaggle Grandmaster Fill your portfolio with impressive case studies that will come in handy during interviews Packed with exercises and notes pages for you to enhance your skills and record key findings Book DescriptionMore than 80,000 Kaggle novices currently participate in Kaggle competitions. To help them navigate the often-overwhelming world of Kaggle, two Grandmasters put their heads together to write The Kaggle Book, which made plenty of waves in the community. Now, they’ve come back with an even more practical approach based on hands-on exercises that can help you start thinking like an experienced data scientist. In this book, you’ll get up close and personal with four extensive case studies based on past Kaggle competitions. You’ll learn how bright minds predicted which drivers would likely avoid filing insurance claims in Brazil and see how expert Kagglers used gradient-boosting methods to model Walmart unit sales time-series data. Get into computer vision by discovering different solutions for identifying the type of disease present on cassava leaves. And see how the Kaggle community created predictive algorithms to solve the natural language processing problem of subjective question-answering. You can use this workbook as a supplement alongside The Kaggle Book or on its own alongside resources available on the Kaggle website and other online communities. Whatever path you choose, this workbook will help make you a formidable Kaggle competitor.What you will learn Take your modeling to the next level by analyzing different case studies Boost your data science skillset with a curated selection of exercises Combine different methods to create better solutions Get a deeper insight into NLP and how it can help you solve unlikely challenges Sharpen your knowledge of time-series forecasting Challenge yourself to become a better data scientist Who this book is forIf you’re new to Kaggle and want to sink your teeth into practical exercises, start with The Kaggle Book, first. A basic understanding of the Kaggle platform, along with knowledge of machine learning and data science is a prerequisite. This book is suitable for anyone starting their Kaggle journey or veterans trying to get better at it. Data analysts/scientists who want to do better in Kaggle competitions and secure jobs with tech giants will find this book helpful.

The Kaggle Book


The Kaggle Book

Author: Konrad Banachewicz

language: en

Publisher: Packt Publishing Ltd

Release Date: 2022-04-22


DOWNLOAD





Get a step ahead of your competitors with insights from over 30 Kaggle Masters and Grandmasters. Discover tips, tricks, and best practices for competing effectively on Kaggle and becoming a better data scientist. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key Features Learn how Kaggle works and how to make the most of competitions from over 30 expert Kagglers Sharpen your modeling skills with ensembling, feature engineering, adversarial validation and AutoML A concise collection of smart data handling techniques for modeling and parameter tuning Book DescriptionMillions of data enthusiasts from around the world compete on Kaggle, the most famous data science competition platform of them all. Participating in Kaggle competitions is a surefire way to improve your data analysis skills, network with an amazing community of data scientists, and gain valuable experience to help grow your career. The first book of its kind, The Kaggle Book assembles in one place the techniques and skills you’ll need for success in competitions, data science projects, and beyond. Two Kaggle Grandmasters walk you through modeling strategies you won’t easily find elsewhere, and the knowledge they’ve accumulated along the way. As well as Kaggle-specific tips, you’ll learn more general techniques for approaching tasks based on image, tabular, textual data, and reinforcement learning. You’ll design better validation schemes and work more comfortably with different evaluation metrics. Whether you want to climb the ranks of Kaggle, build some more data science skills, or improve the accuracy of your existing models, this book is for you. Plus, join our Discord Community to learn along with more than 1,000 members and meet like-minded people!What you will learn Get acquainted with Kaggle as a competition platform Make the most of Kaggle Notebooks, Datasets, and Discussion forums Create a portfolio of projects and ideas to get further in your career Design k-fold and probabilistic validation schemes Get to grips with common and never-before-seen evaluation metrics Understand binary and multi-class classification and object detection Approach NLP and time series tasks more effectively Handle simulation and optimization competitions on Kaggle Who this book is for This book is suitable for anyone new to Kaggle, veteran users, and anyone in between. Data analysts/scientists who are trying to do better in Kaggle competitions and secure jobs with tech giants will find this book useful. A basic understanding of machine learning concepts will help you make the most of this book.

Approaching (Almost) Any Machine Learning Problem


Approaching (Almost) Any Machine Learning Problem

Author: Abhishek Thakur

language: en

Publisher: Abhishek Thakur

Release Date: 2020-07-04


DOWNLOAD





This is not a traditional book. The book has a lot of code. If you don't like the code first approach do not buy this book. Making code available on Github is not an option. This book is for people who have some theoretical knowledge of machine learning and deep learning and want to dive into applied machine learning. The book doesn't explain the algorithms but is more oriented towards how and what should you use to solve machine learning and deep learning problems. The book is not for you if you are looking for pure basics. The book is for you if you are looking for guidance on approaching machine learning problems. The book is best enjoyed with a cup of coffee and a laptop/workstation where you can code along. Table of contents: - Setting up your working environment - Supervised vs unsupervised learning - Cross-validation - Evaluation metrics - Arranging machine learning projects - Approaching categorical variables - Feature engineering - Feature selection - Hyperparameter optimization - Approaching image classification & segmentation - Approaching text classification/regression - Approaching ensembling and stacking - Approaching reproducible code & model serving There are no sub-headings. Important terms are written in bold. I will be answering all your queries related to the book and will be making YouTube tutorials to cover what has not been discussed in the book. To ask questions/doubts, visit this link: https://bit.ly/aamlquestions And Subscribe to my youtube channel: https://bit.ly/abhitubesub