The Inverse Problem Of The Calculus Of Variations

Download The Inverse Problem Of The Calculus Of Variations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Inverse Problem Of The Calculus Of Variations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
The Inverse Problem of the Calculus of Variations

The aim of the present book is to give a systematic treatment of the inverse problem of the calculus of variations, i.e. how to recognize whether a system of differential equations can be treated as a system for extremals of a variational functional (the Euler-Lagrange equations), using contemporary geometric methods. Selected applications in geometry, physics, optimal control, and general relativity are also considered. The book includes the following chapters: - Helmholtz conditions and the method of controlled Lagrangians (Bloch, Krupka, Zenkov) - The Sonin-Douglas's problem (Krupka) - Inverse variational problem and symmetry in action: The Ostrogradskyj relativistic third order dynamics (Matsyuk.) - Source forms and their variational completion (Voicu) - First-order variational sequences and the inverse problem of the calculus of variations (Urban, Volna) - The inverse problem of the calculus of variations on Grassmann fibrations (Urban).
The Inverse Problem of the Calculus of Variations for Ordinary Differential Equations

This monograph explores various aspects of the inverse problem of the calculus of variations for systems of ordinary differential equations. The main problem centres on determining the existence and degree of generality of Lagrangians whose system of Euler-Lagrange equations coicides with a given system of ordinary differential equations. The authors rederive the basic necessary and sufficient conditions of Douglas for second order equations and extend them to equations of higher order using methods of the variational bicomplex of Tulcyjew, Vinogradov, and Tsujishita. The authors present an algorithm, based upon exterior differential systems techniques, for solving the inverse problem for second order equations. a number of new examples illustrate the effectiveness of this approach.
__________

Author: V. M. Filippov
language: en
Publisher: American Mathematical Soc.
Release Date: 1989-12-31
This book develops a variational method for solving linear equations with $B$-symmetric and $B$-positive operators and generalizes the method to nonlinear equations with nonpotential operators. The author carries out a constructive extension of the variational method to ``nonvariational'' equations (including parabolic equations) in classes of functionals which differ from the Euler-Lagrange functionals. In this connection, some new functions spaces are considered. Intended for mathematicians working in the areas of functional analysis and differential equations, this book would also prove useful for researchers in other areas and students in advanced courses who use variational methods in solving linear and nonlinear boundary value problems in continuum mechanics and theoretical physics.