The Invariant Theory Of Matrices

Download The Invariant Theory Of Matrices PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Invariant Theory Of Matrices book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
The Invariant Theory of Matrices

Author: Corrado De Concini
language: en
Publisher: American Mathematical Soc.
Release Date: 2017-11-16
This book gives a unified, complete, and self-contained exposition of the main algebraic theorems of invariant theory for matrices in a characteristic free approach. More precisely, it contains the description of polynomial functions in several variables on the set of matrices with coefficients in an infinite field or even the ring of integers, invariant under simultaneous conjugation. Following Hermann Weyl's classical approach, the ring of invariants is described by formulating and proving (1) the first fundamental theorem that describes a set of generators in the ring of invariants, and (2) the second fundamental theorem that describes relations between these generators. The authors study both the case of matrices over a field of characteristic 0 and the case of matrices over a field of positive characteristic. While the case of characteristic 0 can be treated following a classical approach, the case of positive characteristic (developed by Donkin and Zubkov) is much harder. A presentation of this case requires the development of a collection of tools. These tools and their application to the study of invariants are exlained in an elementary, self-contained way in the book.
Random Matrix Theory

Author: Percy Deift
language: en
Publisher: American Mathematical Soc.
Release Date: 2009-01-01
"This book features a unified derivation of the mathematical theory of the three classical types of invariant random matrix ensembles-orthogonal, unitary, and symplectic. The authors follow the approach of Tracy and Widom, but the exposition here contains a substantial amount of additional material, in particular, facts from functional analysis and the theory of Pfaffians. The main result in the book is a proof of universality for orthogonal and symplectic ensembles corresponding to generalized Gaussian type weights following the authors' prior work. New, quantitative error estimates are derived." --Book Jacket.
Invariant Subspaces of Matrices with Applications

This unique book addresses advanced linear algebra using invariant subspaces as the central notion and main tool. It comprehensively covers geometrical, algebraic, topological, and analytic properties of invariant subspaces, laying clear mathematical foundations for linear systems theory with a thorough treatment of analytic perturbation theory for matrix functions.