The Hilbert Function Of A Level Algebra

Download The Hilbert Function Of A Level Algebra PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Hilbert Function Of A Level Algebra book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
The Hilbert Function of a Level Algebra

Author: A. V. Geramita
language: en
Publisher: American Mathematical Soc.
Release Date: 2007
Let $R$ be a polynomial ring over an algebraically closed field and let $A$ be a standard graded Cohen-Macaulay quotient of $R$. The authors state that $A$ is a level algebra if the last module in the minimal free resolution of $A$ (as $R$-module) is of the form $R(-s)a$, where $s$ and $a$ are positive integers. When $a=1$ these are also known as Gorenstein algebras. The basic question addressed in this paper is: What can be the Hilbert Function of a level algebra? The authors consider the question in several particular cases, e.g., when $A$ is an Artinian algebra, or when $A$ is the homogeneous coordinate ring of a reduced set of points, or when $A$ satisfies the Weak Lefschetz Property. The authors give new methods for showing that certain functions are NOT possible as the Hilbert function of a level algebra and also give new methods to construct level algebras. In a (rather long) appendix, the authors apply their results to give complete lists of all possible Hilbert functions in the case that the codimension of $A = 3$, $s$ is small and $a$ takes on certain fixed values.
The Hilbert Function of a Level Algebra

Author: A. V. Geramita
language: en
Publisher: American Mathematical Soc.
Release Date: 2007
Let $R$ be a polynomial ring over an algebraically closed field and let $A$ be a standard graded Cohen-Macaulay quotient of $R$. The authors state that $A$ is a level algebra if the last module in the minimal free resolution of $A$ (as $R$-module) is of the form $R(-s)a$, where $s$ and $a$ are positive integers. When $a=1$ these are also known as Gorenstein algebras. The basic question addressed in this paper is: What can be the Hilbert Function of a level algebra? The authors consider the question in several particular cases, e.g., when $A$ is an Artinian algebra, or when $A$ is the homogeneous coordinate ring of a reduced set of points, or when $A$ satisfies the Weak Lefschetz Property. The authors give new methods for showing that certain functions are NOT possible as the Hilbert function of a level algebra and also give new methods to construct level algebras. In a (rather long) appendix, the authors apply their results to give complete lists of all possible Hilbert functions in the case that the codimension of $A = 3$, $s$ is small and $a$ takes on certain fixed values.
Syzygies and Hilbert Functions

Hilbert functions and resolutions are both central objects in commutative algebra and fruitful tools in the fields of algebraic geometry, combinatorics, commutative algebra, and computational algebra. Spurred by recent research in this area, Syzygies and Hilbert Functions explores fresh developments in the field as well as fundamental concepts.