The Geometry Of The Octonions


Download The Geometry Of The Octonions PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Geometry Of The Octonions book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

The Geometry Of The Octonions


The Geometry Of The Octonions

Author: Tevian Dray

language: en

Publisher: World Scientific

Release Date: 2015-04-08


DOWNLOAD





There are precisely two further generalizations of the real and complex numbers, namely, the quaternions and the octonions. The quaternions naturally describe rotations in three dimensions. In fact, all (continuous) symmetry groups are based on one of these four number systems. This book provides an elementary introduction to the properties of the octonions, with emphasis on their geometric structure. Elementary applications covered include the rotation groups and their spacetime generalization, the Lorentz group, as well as the eigenvalue problem for Hermitian matrices. In addition, more sophisticated applications include the exceptional Lie groups, octonionic projective spaces, and applications to particle physics including the remarkable fact that classical supersymmetry only exists in particular spacetime dimensions.

The Geometry of the Octonions


The Geometry of the Octonions

Author: Tevian Dray

language: en

Publisher: World Scientific

Release Date: 2015


DOWNLOAD





There are precisely two further generalizations of the real and complex numbers, namely, the quaternions and the octonions. The quaternions naturally describe rotations in three dimensions. In fact, all (continuous) symmetry groups are based on one of these four number systems. This book provides an elementary introduction to the properties of the octonions, with emphasis on their geometric structure. Elementary applications covered include the rotation groups and their spacetime generalization, the Lorentz group, as well as the eigenvalue problem for Hermitian matrices. In addition, more sophisticated applications include the exceptional Lie groups, octonionic projective spaces, and applications to particle physics including the remarkable fact that classical supersymmetry only exists in particular spacetime dimensions.Contents: Introduction"Number Systems: "The Geometry of the Complex NumbersThe Geometry of the QuaternionsThe Geometry of the OctonionsOther Number Systems"Symmetry Groups: "Some Orthogonal GroupsSome Unitary GroupsSome Symplectic GroupsSymmetry Groups over Other Division AlgebrasLie Groups and Lie AlgebrasThe Exceptional Groups"Applications: "Division Algebras in MathematicsOctonionic Eigenvalue ProblemsThe Physics of the OctonionsMagic Squares Readership: Advanced ubdergraduate and graduate students and faculty in mathematics and physics; non-experts with moderately sophisticated mathematics background. Key Features: This book is easily digestible by a large audience wanting to know the elementary introduction to octanionsSuitable for any reader with a grasp of the complex numbers, although familiarity with non-octonionic versions of some of the other topics would be helpfulMany open problems are very accessibleAdvanced topics covered are quite sophisticated, leading up to a clear discussion of (one representation of) the exceptional Lie algebras and their associated root diagrams, and of the octonionic projective spaces on which they act

Rotations, Quaternions, and Double Groups


Rotations, Quaternions, and Double Groups

Author: Simon L. Altmann

language: en

Publisher: Courier Corporation

Release Date: 2013-04-09


DOWNLOAD





This self-contained text presents a consistent description of the geometric and quaternionic treatment of rotation operators, employing methods that lead to a rigorous formulation and offering complete solutions to many illustrative problems. Geared toward upper-level undergraduates and graduate students, the book begins with chapters covering the fundamentals of symmetries, matrices, and groups, and it presents a primer on rotations and rotation matrices. Subsequent chapters explore rotations and angular momentum, tensor bases, the bilinear transformation, projective representations, and the geometry, topology, and algebra of rotations. Some familiarity with the basics of group theory is assumed, but the text assists students in developing the requisite mathematical tools as necessary.