The Geometry Of Complex Domains

Download The Geometry Of Complex Domains PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Geometry Of Complex Domains book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
The Geometry of Complex Domains

Author: Robert E. Greene
language: en
Publisher: Springer Science & Business Media
Release Date: 2011-05-18
This work examines a rich tapestry of themes and concepts and provides a comprehensive treatment of an important area of mathematics, while simultaneously covering a broader area of the geometry of domains in complex space. At once authoritative and accessible, this text touches upon many important parts of modern mathematics: complex geometry, equivalent embeddings, Bergman and Kahler geometry, curvatures, differential invariants, boundary asymptotics of geometries, group actions, and moduli spaces. The Geometry of Complex Domains can serve as a “coming of age” book for a graduate student who has completed at least one semester or more of complex analysis, and will be most welcomed by analysts and geometers engaged in current research.
Nonlinear Semigroups, Fixed Points, and Geometry of Domains in Banach Spaces

Nonlinear semigroup theory is not only of intrinsic interest, but is also important in the study of evolution problems. In the last forty years, the generation theory of flows of holomorphic mappings has been of great interest in the theory of Markov stochastic branching processes, the theory of composition operators, control theory, and optimization. It transpires that the asymptotic behavior of solutions to evolution equations is applicable to the study of the geometry of certain domains in complex spaces.Readers are provided with a systematic overview of many results concerning both nonlinear semigroups in metric and Banach spaces and the fixed point theory of mappings, which are nonexpansive with respect to hyperbolic metrics (in particular, holomorphic self-mappings of domains in Banach spaces). The exposition is organized in a readable and intuitive manner, presenting basic functional and complex analysis as well as very recent developments.