The Game Of Cops And Robbers On Graphs

Download The Game Of Cops And Robbers On Graphs PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Game Of Cops And Robbers On Graphs book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
The Game of Cops and Robbers on Graphs

Author: Anthony Bonato
language: en
Publisher: American Mathematical Soc.
Release Date: 2011-08-16
This book is the first and only one of its kind on the topic of Cops and Robbers games, and more generally, on the field of vertex pursuit games on graphs. The book is written in a lively and highly readable fashion, which should appeal to both senior undergraduates and experts in the field (and everyone in between). One of the main goals of the book is to bring together the key results in the field; as such, it presents structural, probabilistic, and algorithmic results on Cops and Robbers games. Several recent and new results are discussed, along with a comprehensive set of references. The book is suitable for self-study or as a textbook, owing in part to the over 200 exercises. The reader will gain insight into all the main directions of research in the field and will be exposed to a number of open problems.
Inversion Theory and Conformal Mapping

Author: David E. Blair
language: en
Publisher: American Mathematical Soc.
Release Date: 2000-08-17
It is rarely taught in an undergraduate or even graduate curriculum that the only conformal maps in Euclidean space of dimension greater than two are those generated by similarities and inversions in spheres. This is in stark contrast to the wealth of conformal maps in the plane. The principal aim of this text is to give a treatment of this paucity of conformal maps in higher dimensions. The exposition includes both an analytic proof in general dimension and a differential-geometric proof in dimension three. For completeness, enough complex analysis is developed to prove the abundance of conformal maps in the plane. In addition, the book develops inversion theory as a subject, along with the auxiliary theme of circle-preserving maps. A particular feature is the inclusion of a paper by Caratheodory with the remarkable result that any circle-preserving transformation is necessarily a Mobius transformation, not even the continuity of the transformation is assumed. The text is at the level of advanced undergraduates and is suitable for a capstone course, topics course, senior seminar or independent study. Students and readers with university courses in differential geometry or complex analysis bring with them background to build on, but such courses are not essential prerequisites.