The Flexible Coefficient Multinomial Logit Fc Mnl Model Of Demand For Differentiated Products

Download The Flexible Coefficient Multinomial Logit Fc Mnl Model Of Demand For Differentiated Products PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Flexible Coefficient Multinomial Logit Fc Mnl Model Of Demand For Differentiated Products book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
The Flexible Coefficient Multinomial Logit (FC-MNL) Model of Demand for Differentiated Products

We show FC-MNL is flexible in the sense of Diewert (1974), thus its parameters can be chosen to match a well-defined class of possible own- and cross-price elasticities of demand. In contrast to models such as Probit and Random Coefficient-MNL models, FC-MNL does not require estimation via simulation; it is fully analytic. Under well-defined and testable parameter restrictions, FC-MNL is shown to be an unexplored member of McFadden's class of Multivariate Extreme Value discrete-choice models. Therefore, FC-MNL is fully consistent with an underlying structural model of heterogeneous, utility-maximizing consumers. We provide a Monte-Carlo study to establish its properties and we illustrate the use by estimating the demand for new automobiles in Italy.
Flexible Estimation of Random Coefficient Logit Models of Differentiated Product Demand

The Berry, Levinsohn, and Pakes (1995, BLP) model is widely used to obtain parameter estimates of market forces in differentiated product markets. The results are often used as an input to evaluate economic activity in a structural model of demand and supply. Precise estimation of parameter estimates is therefore crucial to obtain realistic economic predictions. The present paper combines the BLP model and the logit mixed logit model of Train (2016) to estimate the distribution of consumer heterogeneity in a flexible and parsimonious way. A Monte Carlo study yields asymptotically normally distributed and consistent estimates of the structural parameters. With access to micro data, the approach allows for the estimation of highly flexible parametric distributions. The estimator further allows to introduce correlations between tastes, yielding more realistic demand patterns without substantially altering the procedure of estimation, making it relevant for practitioners. The BLP estimator is established to yield biased and inconsistent results when the underlying distributional shape is non-normally distributed. An application shows the estimator to perform well on a real world dataset and provides similar estimates as the BLP estimator with the option of specifying consumer heterogeneity as a function of a polynomial, step function or spline, resulting in a flexible estimation procedure.