The Fast Solution Of Boundary Integral Equations


Download The Fast Solution Of Boundary Integral Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Fast Solution Of Boundary Integral Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

The Fast Solution of Boundary Integral Equations


The Fast Solution of Boundary Integral Equations

Author: Sergej Rjasanow

language: en

Publisher: Springer Science & Business Media

Release Date: 2007-04-17


DOWNLOAD





Boundary Element Methods (BEM) play an important role in modern numerical computations in the applied and engineering sciences. These methods turn out to be powerful tools for numerical studies of various physical phenomena which can be described mathematically by partial differential equations. The most prominent example is the potential equation (Laplace equation), which is used to model physical phenomena in electromagnetism, gravitation theory, and in perfect fluids. A further application leading to the Laplace equation is the model of steady state heat flow. One of the most popular applications of the BEM is the system of linear elastostatics, which can be considered in both bounded and unbounded domains. A simple model for a fluid flow, the Stokes system, can also be solved by the use of the BEM. The most important examples for the Helmholtz equation are the acoustic scattering and the sound radiation. The Fast Solution of Boundary Integral Equations provides a detailed description of fast boundary element methods which are based on rigorous mathematical analysis. In particular, a symmetric formulation of boundary integral equations is used, Galerkin discretisation is discussed, and the necessary related stability and error estimates are derived. For the practical use of boundary integral methods, efficient algorithms together with their implementation are needed. The authors therefore describe the Adaptive Cross Approximation Algorithm, starting from the basic ideas and proceeding to their practical realization. Numerous examples representing standard problems are given which underline both theoretical results and the practical relevance of boundary element methods in typical computations.

The Fast Solution of Boundary Integral Equations


The Fast Solution of Boundary Integral Equations

Author: Sergej Rjasanow

language: en

Publisher: Springer

Release Date: 2008-11-01


DOWNLOAD





This book provides a detailed description of fast boundary element methods, all based on rigorous mathematical analysis. In particular, the authors use a symmetric formulation of boundary integral equations as well as discussing Galerkin discretisation. All the necessary related stability and error estimates are derived. The authors therefore describe the Adaptive Cross Approximation Algorithm, starting from the basic ideas and proceeding to their practical realization. Numerous examples representing standard problems are given.

Wavelets for the Fast Solution of Boundary Integral Equations


Wavelets for the Fast Solution of Boundary Integral Equations

Author: Helmut Harbrecht

language: en

Publisher:

Release Date: 2006


DOWNLOAD