The Essence Of Multivariate Thinking

Download The Essence Of Multivariate Thinking PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Essence Of Multivariate Thinking book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
The Essence of Multivariate Thinking

The Essence of Multivariate Thinking is intended to make multivariate statistics more accessible to a wide audience. To encourage a more thorough understanding of multivariate methods, author Lisa Harlow suggests basic themes that run through most statistical methodology. The most pervasive theme is multiplicity. The author argues that the use of multivariate methods encourages multiple ways of investigating phenomena. She explains that widening our lens to identify multiple theories, constructs, measures, samples, methods, and time points provide greater reliability and validity in our research. Dr. Harlow then shows how these themes are applied to several multivariate methods, with the hope that this will ease understanding in the basic concepts of multivariate thinking. Formulas are kept at a minimum. The first three chapters review the core themes that run through multivariate methods. Seven different multivariate methods are then described using 10 questions that illuminate the main features, uses, multiplicity, themes, interpretations, and applications. The seven methods covered are multiple regression, analysis of covariance, multivariate analysis of variance, discriminant function analysis, logistic regression, canonical correlation, and principal components/factor analysis. The final chapter pulls together the principal themes and features charts that list common themes and how they pertain to each of the methods discussed. The Essence of Multivariate Thinking, features: A unique focus on the underlying themes that run through most multivariate methods. A dual focus on significance tests and effect sizes to encourage readers to adopt a thorough approach to assessing the significance and magnitude of their findings. A detailed example for each method to delineate how the multivariate themes apply. Tabular results from statistical analysis programs that mirror sections of the output files. A common dataset throughout the chapters to provide continuity with the variables and research questions. A CD with data, SAS program setup and output, homework exercises, and chapter lectures. This book is useful to advanced students, professionals, and researchers interested in applying multivariate methods in such fields as behavioral medicine, social, health, personality, developmental, cognitive, and industrial-organizational psychology, as well as in education and evaluation. A preliminary knowledge of basic statistics, research methods, basic algebra, and finite mathematics is recommended.
Cognitive Assessment

This book introduces a new methodology for the analysis of test results. Free from ambiguous interpretations, the results truly demonstrate an individual’s progress. The methodology is ideal for highlighting patterns derived from test scores used in evaluating progress. Dr. Tatsuoka introduces readers to the Rule Space Method (RSM), a technique that transforms unobservable knowledge and skill variables into observable and measurable attributes. RSM converts item response patterns into attribute mastery probabilities. RSM is the only up-to-date methodology that can handle large scale assessment for tests such as the SAT and PSAT. PSAT used the results from this methodology to create cognitively diagnostic scoring reports. In this capacity, RSM helps teachers understand what scores mean by helping them ascertain an individual’s cognitive strengths and weaknesses. For example, two students may have the exact same score, but for different reasons. One student might excel at processing grammatically complex texts but miss the main idea of the prose, while another excels at understanding the global message. Such knowledge helps teachers customize a student’s education to his or her cognitive abilities. RSM is also used for medical diagnoses, genetics research, and to help classify music into various states of emotions for treating mental problems. The book opens with an overview of cognitive assessment research and nonparametric and parametric person-fit statistics. The Q-matrix theory is then introduced followed by the Rule Space method. Various properties of attribute mastery probabilities are then introduced along with the reliability theory of attributes and its connection to classical and item response theory. The book concludes with a discussion of how the construct validity of a test can be clarified with the Rule Space method. Intended for researchers and graduate students in quantitative, educational, and cognitive psychology, this book also appeals to those in computer science, neuroscience, medicine, and mathematics. The book is appropriate for advanced courses on cognometrics, latent class structures, and advanced psychometrics as well as statistical pattern recognition and classification courses taught in statistics and/or math departments.
Understanding The New Statistics

This is the first book to introduce the new statistics - effect sizes, confidence intervals, and meta-analysis - in an accessible way. It is chock full of practical examples and tips on how to analyze and report research results using these techniques. The book is invaluable to readers interested in meeting the new APA Publication Manual guidelines by adopting the new statistics - which are more informative than null hypothesis significance testing, and becoming widely used in many disciplines. Accompanying the book is the Exploratory Software for Confidence Intervals (ESCI) package, free software that runs under Excel and is accessible at www.thenewstatistics.com. The book’s exercises use ESCI's simulations, which are highly visual and interactive, to engage users and encourage exploration. Working with the simulations strengthens understanding of key statistical ideas. There are also many examples, and detailed guidance to show readers how to analyze their own data using the new statistics, and practical strategies for interpreting the results. A particular strength of the book is its explanation of meta-analysis, using simple diagrams and examples. Understanding meta-analysis is increasingly important, even at undergraduate levels, because medicine, psychology and many other disciplines now use meta-analysis to assemble the evidence needed for evidence-based practice. The book’s pedagogical program, built on cognitive science principles, reinforces learning: Boxes provide "evidence-based" advice on the most effective statistical techniques. Numerous examples reinforce learning, and show that many disciplines are using the new statistics. Graphs are tied in with ESCI to make important concepts vividly clear and memorable. Opening overviews and end of chapter take-home messages summarize key points. Exercises encourage exploration, deep understanding, and practical applications. This highly accessible book is intended as the core text for any course that emphasizes the new statistics, or as a supplementary text for graduate and/or advanced undergraduate courses in statistics and research methods in departments of psychology, education, human development , nursing, and natural, social, and life sciences. Researchers and practitioners interested in understanding the new statistics, and future published research, will also appreciate this book. A basic familiarity with introductory statistics is assumed.