The E M Stein Lectures On Hardy Spaces

Download The E M Stein Lectures On Hardy Spaces PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The E M Stein Lectures On Hardy Spaces book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
The E. M. Stein Lectures on Hardy Spaces

The book The E. M. Stein Lectures on Hardy Spaces is based on a graduate course on real variable Hardy spaces which was given by E.M. Stein at Princeton University in the academic year 1973-1974. Stein, along with C. Fefferman and G. Weiss, pioneered this subject area, removing the theory of Hardy spaces from its traditional dependence on complex variables, and to reveal its real-variable underpinnings. This book is based on Steven G. Krantz’s notes from the course given by Stein. The text builds on Fefferman's theorem that BMO is the dual of the Hardy space. Using maximal functions, singular integrals, and related ideas, Stein offers many new characterizations of the Hardy spaces. The result is a rich tapestry of ideas that develops the theory of singular integrals to a new level. The final chapter describes the major developments since 1974. This monograph is of broad interest to graduate students and researchers in mathematical analysis. Prerequisites for the book include a solid understanding of real variable theory and complex variable theory. A basic knowledge of functional analysis would also be useful.
Four Lectures on Real Hp? Spaces

This book introduces the real variable theory of HP spaces briefly and concentrates on its applications to various aspects of analysis fields. It consists of four chapters. Chapter 1 introduces the basic theory of Fefferman-Stein on real HP spaces. Chapter 2 describes the atomic decomposition theory and the molecular decomposition theory of real HP spaces. In addition, the dual spaces of real HP spaces, the interpolation of operators in HP spaces, and the interpolation of HP spaces are also discussed in Chapter 2. The properties of several basic operators in HP spaces are discussed in Chapter 3 in detail. Among them, some basic results are contributed by Chinese mathematicians, such as the decomposition theory of weak HP spaces and its applications to the study on the sharpness of singular integrals, a new method to deal with the elliptic Riesz means in HP spaces, and the transference theorem of HP-multipliers etc. The last chapter is devoted to applications of real HP spaces to approximation theory.
Hardy Spaces on Ahlfors-Regular Quasi Metric Spaces

Systematically constructing an optimal theory, this monograph develops and explores several approaches to Hardy spaces in the setting of Alhlfors-regular quasi-metric spaces. The text is divided into two main parts, with the first part providing atomic, molecular, and grand maximal function characterizations of Hardy spaces and formulates sharp versions of basic analytical tools for quasi-metric spaces, such as a Lebesgue differentiation theorem with minimal demands on the underlying measure, a maximally smooth approximation to the identity and a Calderon-Zygmund decomposition for distributions. These results are of independent interest. The second part establishes very general criteria guaranteeing that a linear operator acts continuously from a Hardy space into a topological vector space, emphasizing the role of the action of the operator on atoms. Applications include the solvability of the Dirichlet problem for elliptic systems in the upper-half space with boundary data from Hardy spaces. The tools established in the first part are then used to develop a sharp theory of Besov and Triebel-Lizorkin spaces in Ahlfors-regular quasi-metric spaces. The monograph is largely self-contained and is intended for mathematicians, graduate students and professionals with a mathematical background who are interested in the interplay between analysis and geometry.