The Development Of A 2d Ultrasonic Array Inspection For Single Crystal Turbine Blades

Download The Development Of A 2d Ultrasonic Array Inspection For Single Crystal Turbine Blades PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Development Of A 2d Ultrasonic Array Inspection For Single Crystal Turbine Blades book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
The Development of a 2D Ultrasonic Array Inspection for Single Crystal Turbine Blades

Author: Christopher Lane
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-10-30
This thesis describes the development of a new technique to solve an important industrial inspection requirement for a high-value jet-engine component. The work – and the story told in the thesis – stretches all the way from the fundamentals of wave propagation in anisotropic material and ultrasonic array imaging through to device production and site trials. The book includes a description of a new method to determine crystallographic orientation from 2D ultrasonic array data. Another new method is described that enables volumetric images of an anisotropic material to be generated from 2D ultrasonic array data, based on measured crystallographic orientation. After extensive modeling, a suitable 2D array and deployment fixtures were manufactured and tested on in situ turbine blades in real engines. The final site trial indicated an order of magnitude improvement over the best existing technique in the detectability of a certain type of root cracking. The Development of a 2D Ultrasonic Array Inspection for Single Crystal Turbine Blades should be an inspiration for those starting out on doctoral degrees as it shows the complete development cycle from basic science to industrial usage.
Fundamentals of Ultrasonic Testing

Focusing on the theory and state-of-the-art technologies of ultrasonic testing (UT), this book examines ultrasonic propagation in solids and its detection applications, and explores the intersection of UT technology with various fields of electromagnetics, optics and physics. UT is one of the most widely used nondestructive testing techniques due to its high performance in terms of detection efficiency and safety. The rapid development of modern industrial products and technologies has created a new challenge and demand for ultrasonic nondestructive testing technology. This book introduces the fundamentals of UT, including sound wave and sound field, interface wave theory and liquid-solid coupled sound field. It then discusses various types of UT methods, ranging from the critically refracted longitudinal wave method to ultrasonic surface wave and ultrasonic guided wave detection methods. Some newly developed UT techniques are also discussed, including phased-array UT, high-frequency UT and non-contact UT. This title will appeal to engineering students and technicians in the field of ultrasonic nondestructive testing.