The Consistency Of Arithmetic


Download The Consistency Of Arithmetic PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Consistency Of Arithmetic book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

The Consistency of Arithmetic


The Consistency of Arithmetic

Author: Storrs McCall

language: en

Publisher: Oxford University Press

Release Date: 2014-06-02


DOWNLOAD





This volume contains six new and fifteen previously published essays -- plus a new introduction -- by Storrs McCall. Some of the essays were written in collaboration with E. J. Lowe of Durham University. The essays discuss controversial topics in logic, action theory, determinism and indeterminism, and the nature of human choice and decision. Some construct a modern up-to-date version of Aristotle's bouleusis, practical deliberation. This process of practical deliberation is shown to be indeterministic but highly controlled and the antithesis of chance. Others deal with the concept of branching four-dimensional space-time, explain non-local influences in quantum mechanics, or reconcile God's omniscience with human free will. The eponymous first essay contains the proof of a fact that in 1931 Kurt Gödel had claimed to be unprovable, namely that the set of arithmetic truths forms a consistent system.

An Introduction to Proof Theory


An Introduction to Proof Theory

Author: Paolo Mancosu

language: en

Publisher: Oxford University Press

Release Date: 2021


DOWNLOAD





"Proof theory is a central area of mathematical logic of special interest to philosophy . It has its roots in the foundational debate of the 1920s, in particular, in Hilbert's program in the philosophy of mathematics, which called for a formalization of mathematics, as well as for a proof, using philosophically unproblematic, "finitary" means, that these systems are free from contradiction. Structural proof theory investigates the structure and properties of proofs in different formal deductive systems, including axiomatic derivations, natural deduction, and the sequent calculus. Central results in structural proof theory are the normalization theorem for natural deduction, proved here for both intuitionistic and classical logic, and the cut-elimination theorem for the sequent calculus. In formal systems of number theory formulated in the sequent calculus, the induction rule plays a central role. It can be eliminated from proofs of sequents of a certain elementary form: every proof of an atomic sequent can be transformed into a "simple" proof. This is Hilbert's central idea for giving finitary consistency proofs. The proof requires a measure of proof complexity called an ordinal notation. The branch of proof theory dealing with mathematical systems such as arithmetic thus has come to be called ordinal proof theory. The theory of ordinal notations is developed here in purely combinatorial terms, and the consistency proof for arithmetic presented in detail"--

Gödel's Theorems and Zermelo's Axioms


Gödel's Theorems and Zermelo's Axioms

Author: Lorenz Halbeisen

language: en

Publisher: Springer Nature

Release Date: 2020-10-16


DOWNLOAD





This book provides a concise and self-contained introduction to the foundations of mathematics. The first part covers the fundamental notions of mathematical logic, including logical axioms, formal proofs and the basics of model theory. Building on this, in the second and third part of the book the authors present detailed proofs of Gödel’s classical completeness and incompleteness theorems. In particular, the book includes a full proof of Gödel’s second incompleteness theorem which states that it is impossible to prove the consistency of arithmetic within its axioms. The final part is dedicated to an introduction into modern axiomatic set theory based on the Zermelo’s axioms, containing a presentation of Gödel’s constructible universe of sets. A recurring theme in the whole book consists of standard and non-standard models of several theories, such as Peano arithmetic, Presburger arithmetic and the real numbers. The book addresses undergraduate mathematics students and is suitable for a one or two semester introductory course into logic and set theory. Each chapter concludes with a list of exercises.