The Basics Of Item Response Theory Using R


Download The Basics Of Item Response Theory Using R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Basics Of Item Response Theory Using R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

The Basics of Item Response Theory Using R


The Basics of Item Response Theory Using R

Author: Frank B. Baker

language: en

Publisher: Springer

Release Date: 2017-04-25


DOWNLOAD





This graduate-level textbook is a tutorial for item response theory that covers both the basics of item response theory and the use of R for preparing graphical presentation in writings about the theory. Item response theory has become one of the most powerful tools used in test construction, yet one of the barriers to learning and applying it is the considerable amount of sophisticated computational effort required to illustrate even the simplest concepts. This text provides the reader access to the basic concepts of item response theory freed of the tedious underlying calculations. It is intended for those who possess limited knowledge of educational measurement and psychometrics. Rather than presenting the full scope of item response theory, this textbook is concise and practical and presents basic concepts without becoming enmeshed in underlying mathematical and computational complexities. Clearly written text and succinct R code allow anyone familiar with statistical concepts to explore and apply item response theory in a practical way. In addition to students of educational measurement, this text will be valuable to measurement specialists working in testing programs at any level and who need an understanding of item response theory in order to evaluate its potential in their settings.

Using R for Item Response Theory Model Applications


Using R for Item Response Theory Model Applications

Author: Insu Paek

language: en

Publisher: Routledge

Release Date: 2019-09-16


DOWNLOAD





Item response theory (IRT) is widely used in education and psychology and is expanding its applications to other social science areas, medical research, and business as well. Using R for Item Response Theory Model Applications is a practical guide for students, instructors, practitioners, and applied researchers who want to learn how to properly use R IRT packages to perform IRT model calibrations with their own data. This book provides practical line-by-line descriptions of how to use R IRT packages for various IRT models. The scope and coverage of the modeling in the book covers almost all models used in practice and in popular research, including: dichotomous response modeling polytomous response modeling mixed format data modeling concurrent multiple group modeling fixed item parameter calibration modelling with latent regression to include person-level covariate(s) simple structure, or between-item, multidimensional modeling cross-loading, or within-item, multidimensional modeling high-dimensional modeling bifactor modeling testlet modeling two-tier modeling For beginners, this book provides a straightforward guide to learn how to use R for IRT applications. For more intermediate learners of IRT or users of R, this book will serve as a great time-saving tool for learning how to create the proper syntax, fit the various models, evaluate the models, and interpret the output using popular R IRT packages.

The Theory and Practice of Item Response Theory


The Theory and Practice of Item Response Theory

Author: R. J. de Ayala

language: en

Publisher: Guilford Publications

Release Date: 2022-04-29


DOWNLOAD





Introduction to measurement -- The one-parameter model -- Joint maximum likelihood parameter estimation -- Marginal maximum likelihood parameter estimation -- The two-parameter model -- The three-parameter model -- Rasch models for ordered polytomous data -- Non-Rasch models for ordered polytomous data -- Models for nominal polytomous data -- Models for multidimensional data -- Linking and equating -- Differential item functioning -- Multilevel IRT models.