The Basic Theory Of Real Closed Spaces

Download The Basic Theory Of Real Closed Spaces PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Basic Theory Of Real Closed Spaces book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
The Basic Theory of Real Closed Spaces

Author: Niels Schwartz
language: en
Publisher: American Mathematical Soc.
Release Date: 1989
Much in the same way as classical algebraic varieties are generalized by the theory of schemes, locally semi-algebraic spaces are generalized by a class of locally ringed spaces, called real closed spaces. The underlying spaces of affine real closed spaces are real spectra of rings, the structure sheaves are called real closed sheaves. With these spaces a theory can be developed which is very similar to the theory of schemes. There is a natural functor from the category of semi-algebraic spaces to the category of real closed spaces. Via this functor properties of semi-algebraic spaces and their corresponding real closed spaces can be compared.
Real Algebraic Geometry

Ten years after the first Rennes international meeting on real algebraic geometry, the second one looked at the developments in the subject during the intervening decade - see the 6 survey papers listed below. Further contributions from the participants on recent research covered real algebra and geometry, topology of real algebraic varieties and 16thHilbert problem, classical algebraic geometry, techniques in real algebraic geometry, algorithms in real algebraic geometry, semialgebraic geometry, real analytic geometry. CONTENTS: Survey papers: M. Knebusch: Semialgebraic topology in the last ten years.- R. Parimala: Algebraic and topological invariants of real algebraic varieties.- Polotovskii, G.M.: On the classification of decomposing plane algebraic curves.- Scheiderer, C.: Real algebra and its applications to geometry in the last ten years: some major developments and results.- Shustin, E.L.: Topology of real plane algebraic curves.- Silhol, R.: Moduli problems in real algebraic geometry. Further contributions by: S. Akbulut and H. King; C. Andradas and J. Ruiz; A. Borobia; L. Br|cker; G.W. Brumfield; A. Castilla; Z. Charzynski and P. Skibinski; M. Coste and M. Reguiat; A. Degtyarev; Z. Denkowska; J.-P. Francoise and F. Ronga; J.M. Gamboa and C. Ueno; D. Gondard- Cozette; I.V. Itenberg; P. Jaworski; A. Korchagin; T. Krasinksi and S. Spodzieja; K. Kurdyka; H. Lombardi; M. Marshall and L. Walter; V.F. Mazurovskii; G. Mikhalkin; T. Mostowski and E. Rannou; E.I. Shustin; N. Vorobjov.
Valuation Theory and Its Applications

Author: Franz-Viktor Kuhlmann
language: en
Publisher: American Mathematical Soc.
Release Date: 2002-01-01
This book is the first of two proceedings volumes stemming from the International Conference and Workshop on Valuation Theory held at the University of Saskatchewan (Saskatoon, SK, Canada). Valuation theory arose in the early part of the twentieth century in connection with number theory and has many important applications to geometry and analysis: the classical application to the study of algebraic curves and to Dedekind and Prufer domains; the close connection to the famousresolution of the singularities problem; the study of the absolute Galois group of a field; the connection between ordering, valuations, and quadratic forms over a formally real field; the application to real algebraic geometry; the study of noncommutative rings; etc. The special feature of this book isits focus on current applications of valuation theory to this broad range of topics. Also included is a paper on the history of valuation theory. The book is suitable for graduate students and research mathematicians working in algebra, algebraic geometry, number theory, and mathematical logic.