The Arithmetic And Spectral Analysis Of Poincar Series

Download The Arithmetic And Spectral Analysis Of Poincar Series PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Arithmetic And Spectral Analysis Of Poincar Series book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
The Arithmetic and Spectral Analysis of Poincaré Series

The Arithmetic and Spectral Analysis of Poincaré series deals with the spectral properties of Poincaré series and their relation to Kloosterman sums. In addition to Poincaré series for an arbitrary Fuchsian group of the first kind, the spectral expansion of the Kloosterman-Selberg zeta function is analyzed, along with the adellic theory of Poincaré series and Kloosterman sums over a global function field. This volume is divided into two parts and begins with a discussion on Poincaré series and Kloosterman sums for Fuchsian groups of the first kind. A conceptual proof of Kuznetsov's formula and its generalization are presented in terms of the spectral analysis of Poincaré series in the framework of representation theory. An analysis of the spectral expansion of the Kloosterman-Selberg zeta function is also included. The second part develops the adellic theory of Poincaré series and Kloosterman sums over a global function field. The main result here is to show that in this context the analogue of the Linnik conjecture can be derived from the Ramanujan conjecture over function fields. Whittaker models, Kirillov models, and Bessel functions are also considered, along with the Kloosterman-spectral formula, convergence, and continuation. This book will be a valuable resource for students of mathematics.
Spectral Analysis on Standard Locally Homogeneous Spaces

A groundbreaking theory has emerged for spectral analysis of pseudo-Riemannian locally symmetric spaces, extending beyond the traditional Riemannian framework. The theory introduces innovative approaches to global analysis of locally symmetric spaces endowed with an indefinite metric. Breakthrough methods in this area are introduced through the development of the branching theory of infinite-dimensional representations of reductive groups, which is based on geometries with spherical hidden symmetries. The book elucidates the foundational principles of the new theory, incorporating previously inaccessible material in the literature. The book covers three major topics. (1) (Theory of Transferring Spectra) It presents a novel theory on transferring spectra along the natural fiber bundle structure of pseudo-Riemannian locally homogeneous spaces over Riemannian locally symmetric spaces. (2) (Spectral Theory) It explores spectral theory for pseudo-Riemannian locally symmetric spaces, including the proof of the essential self-adjointness of the pseudo-Riemannian Laplacian, spectral decomposition of compactly supported smooth functions, and the Plancherel-type formula. (3) (Analysis of the Pseudo-Riemannian Laplacian) It establishes the abundance of real analytic joint eigenfunctions and the existence of an infinite L2 spectrum under certain additional conditions.