Text Mining In Educational Research

Download Text Mining In Educational Research PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Text Mining In Educational Research book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Text Mining in Educational Research

This edited book consolidates and documents recent research on topic modeling in text mining using Latent Dirichlet Allocation (LDA). Written by leading experts in topic modeling, it covers a wide range of areas, such as theory building, systematic research, and innovative applications. This book offers a thorough exploration of the latest advancements in topic modeling. From identifying issues in unstructured text data to categorizing documents and extracting valuable insights, the book provides practical use of LDA as a powerful tool in qualitative and quantitative research. The chapters discuss the rapidly evolving landscape of topic modeling algorithms and offer tangible examples and applications of LDA in educational research, showcasing its real-world impact. This book dives into the heart of educational research and uncovers the transformative potential of Latent Dirichlet Allocation in shaping the future of topic modeling. This book is a valuable resource, highlighting exemplary works and rapid advances in the field. It appeals to students, researchers, and practitioners interested in text mining.
Educational Data Mining

This book is devoted to the Educational Data Mining arena. It highlights works that show relevant proposals, developments, and achievements that shape trends and inspire future research. After a rigorous revision process sixteen manuscripts were accepted and organized into four parts as follows: · Profile: The first part embraces three chapters oriented to: 1) describe the nature of educational data mining (EDM); 2) describe how to pre-process raw data to facilitate data mining (DM); 3) explain how EDM supports government policies to enhance education. · Student modeling: The second part contains five chapters concerned with: 4) explore the factors having an impact on the student's academic success; 5) detect student's personality and behaviors in an educational game; 6) predict students performance to adjust content and strategies; 7) identify students who will most benefit from tutor support; 8) hypothesize the student answer correctness based on eye metrics and mouse click. · Assessment: The third part has four chapters related to: 9) analyze the coherence of student research proposals; 10) automatically generate tests based on competences; 11) recognize students activities and visualize these activities for being presented to teachers; 12) find the most dependent test items in students response data. · Trends: The fourth part encompasses four chapters about how to: 13) mine text for assessing students productions and supporting teachers; 14) scan student comments by statistical and text mining techniques; 15) sketch a social network analysis (SNA) to discover student behavior profiles and depict models about their collaboration; 16) evaluate the structure of interactions between the students in social networks. This volume will be a source of interest to researchers, practitioners, professors, and postgraduate students aimed at updating their knowledge and find targets for future work in the field of educational data mining.
An Introduction to Text Mining

This is the ideal introduction for students seeking to collect and analyze textual data from online sources. It covers the most critical issues that they must take into consideration at all stages of their research projects.